Ar Ravishankara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10534998/publications.pdf

Version: 2024-02-01

687363 713466 21 796 13 21 citations h-index g-index papers 21 21 21 694 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photochemistry of acetone under tropospheric conditions. Chemical Physics, 1998, 231, 229-244.	1.9	154
2	Atmospheric fate of methyl vinyl ketone and methacrolein. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110, 1-10.	3.9	98
3	Kinetics of O(1D) interactions with the atmospheric gases N2, N2O, H2O, H2, CO2, and O3. Chemical Physics Letters, 1981, 77, 103-109.	2.6	86
4	O3 photolysis at 248 nm and O(1D2) quenching by H2O, CH4, H2, and N2O: O(3PJ) yields. Chemical Physics, 1982, 69, 365-373.	1.9	78
5	Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO 3). Applied Physics B: Lasers and Optics, 2002, 75, 173-182.	2.2	68
6	Rate coefficients for $O(1D)$ + H2, D2, HD reactions and H atom yield in $O(1D)$ + HD reaction. Chemical Physics Letters, 1996, 253, 177-183.	2.6	65
7	LIF detection of IO and the rate coefficients for I + O3 and IO + NO reactions. Chemical Physics Letters, 1995, 242, 427-434.	2.6	45
8	Atmospheric Chemistry of (<i>Z</i>)-CF ₃ CHâ•CHCF ₃ : OH Radical Reaction Rate Coefficient and Global Warming Potential. Journal of Physical Chemistry A, 2011, 115, 10539-10549.	2. 5	41
9	The CH3CO quantum yield in the 248nm photolysis of acetone, methyl ethyl ketone, and biacetyl. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 336-344.	3.9	36
10	A study of O(1D) reactions with CFC substitutes. Chemical Physics Letters, 1991, 183, 403-409.	2.6	35
11	A study of the Br + IO → I + BrO and the reverse reaction. Chemical Physics Letters, 1997, 272, 75-82.	2.6	25
12	Near-IR absorption of water vapor: Pressure dependence of line strengths and an upper limit for continuum absorption. Journal of Molecular Spectroscopy, 2005, 232, 223-230.	1.2	17
13	Reactive and non-reactive quenching of O(1D2) by COF2. Chemical Physics Letters, 1983, 96, 129-132.	2.6	14
14	Rate Coefficient Measurements and Theoretical Analysis of the OH + (⟨i⟩E⟨/i⟩)-CF⟨sub⟩3⟨/sub⟩CHâ•€HCF⟨sub⟩3⟨/sub⟩ Reaction. Journal of Physical Chemistry A, 2018, 122, 4635-4646.	2.5	10
15	Analysis of the potential atmospheric impact of the reaction of N2O with OH. Chemical Physics Letters, 2018, 708, 100-105.	2.6	8
16	Ionâ€"molecule reactions in 1,1,2,2-tetrafluorocyclobutane. International Journal of Mass Spectrometry and Ion Physics, 1976, 22, 315-326.	1.3	4
17	The atmospheric impact of the reaction of N2O with NO3: A theoretical study. Chemical Physics Letters, 2019, 731, 136605.	2.6	4
18	Formation of HF in the mercury-sensitized photolysis of fluorohydrocarbons. Journal of Photochemistry and Photobiology, 1976, 6, 17-21.	0.6	3

#	Article	IF	CITATIONS
19	The Hg 6(3P1) photosensitized decomposition of 1,1,2,2-tetrafluorocyclobutane. Journal of Photochemistry and Photobiology, 1977, 7, 201-214.	0.6	2
20	Reaction of N2O with the prototype singlet biradical CH2: A theoretical study. Chemical Physics Letters, 2020, 749, 137446.	2.6	2
21	Gamma-radiolysis of 1,1,2,2-tetrafluorocyclobutane in the gas phase. Radiation Physics and Chemistry (1977), 1977, 10, 183-189.	0.3	1