
Clemens Reimann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10527891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 2005, 346, 1-16.	8.0	639
2	Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 2005, 337, 91-107.	8.0	562
3	Geochemical background—concept and reality. Science of the Total Environment, 2005, 350, 12-27.	8.0	547
4	Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 2002, 17, 185-206.	3.0	452
5	Intrinsic Flaws of Element Enrichment Factors (EFs) in Environmental Geochemistry. Environmental Science & Technology, 2000, 34, 5084-5091.	10.0	432
6	Principal component analysis for compositional data with outliers. Environmetrics, 2009, 20, 621-632.	1.4	376
7	Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment, 2009, 407, 6100-6108.	8.0	354
8	Multivariate outlier detection in exploration geochemistry. Computers and Geosciences, 2005, 31, 579-587.	4.2	329
9	Chemical Elements in the Environment. , 1998, , .		321
10	Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 2008, 23, 2198-2213.	3.0	297
11	The concept of compositional data analysis in practice — Total major element concentrations in agricultural and grazing land soils of Europe. Science of the Total Environment, 2012, 426, 196-210.	8.0	211
12	Drinking water quality in the Ethiopian section of the East African Rift Valley I—data and health aspects. Science of the Total Environment, 2003, 311, 65-80.	8.0	207
13	The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Science of the Total Environment, 2006, 367, 182-190.	8.0	175
14	The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 2010, 408, 4230-4238.	8.0	160
15	Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Science of the Total Environment, 2017, 578, 633-648.	8.0	157
16	GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 2018, 88, 302-318.	3.0	143
17	Comparison of the element composition in several plant species and their substrate from a 1â€^500â€^000-km2 area in Northern Europe. Science of the Total Environment, 2001, 278, 87-112.	8.0	141
18	Variation of 66 elements in European bottled mineral waters. Science of the Total Environment, 1999, 243-244, 21-41.	8.0	130

#	Article	IF	CITATIONS
19	Lead and lead isotopes in agricultural soils of Europe – The continental perspective. Applied Geochemistry, 2012, 27, 532-542.	3.0	129
20	Arsenic distribution in the environment: The effects of scale. Applied Geochemistry, 2009, 24, 1147-1167.	3.0	119
21	Robust factor analysis for compositional data. Computers and Geosciences, 2009, 35, 1854-1861.	4.2	116
22	New soil composition data for Europe and Australia: Demonstrating comparability, identifying continental-scale processes and learning lessons for global geochemical mapping. Science of the Total Environment, 2012, 416, 239-252.	8.0	110
23	Antimony in the environment: Lessons from geochemical mapping. Applied Geochemistry, 2010, 25, 175-198.	3.0	108
24	Natural concentrations of major and trace elements in some Norwegian bedrock groundwaters. Applied Geochemistry, 1995, 10, 1-16.	3.0	102
25	Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification. Applied Geochemistry, 2010, 25, 1030-1046.	3.0	98
26	Top-/bottom-soil ratios and enrichment factors: What do they really show?. Applied Geochemistry, 2012, 27, 138-145.	3.0	97
27	Determination of major and trace elements in European bottled mineral water — Analytical methods. Journal of Geochemical Exploration, 2010, 107, 217-226.	3.2	96
28	Rainwater composition in eight arctic catchments in northern Europe (Finland, Norway and Russia). Atmospheric Environment, 1997, 31, 159-170.	4.1	95
29	Multi-element, multi-medium regional geochemistry in the European Arctic: element concentration, variation and correlation. Applied Geochemistry, 2001, 16, 759-780.	3.0	89
30	Interpretation of multivariate outliers for compositional data. Computers and Geosciences, 2012, 39, 77-85.	4.2	89
31	Mercury in European agricultural and grazing land soils. Applied Geochemistry, 2013, 33, 1-12.	3.0	82
32	Bioavailable 87Sr/86Sr in European soils: A baseline for provenancing studies. Science of the Total Environment, 2019, 672, 1033-1044.	8.0	81
33	Seasonal variability of total and easily leachable element contents in topsoils (0–5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia). Environmental Pollution, 1997, 96, 261-274.	7.5	80
34	Element concentrations and variations along a 120-km transect in southern Norway – Anthropogenic vs. geogenic vs. biogenic element sources and cycles. Applied Geochemistry, 2007, 22, 851-871.	3.0	79
35	Element contents in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients. Science of the Total Environment, 2007, 377, 416-433.	8.0	74
36	GEMAS: Cadmium distribution and its sources in agricultural and grazing land soil of Europe — Original data versus clr-transformed data. Journal of Geochemical Exploration, 2017, 173, 13-30.	3.2	74

#	Article	IF	Citations
37	Arsenic in agricultural and grazing land soils of Europe. Applied Geochemistry, 2013, 28, 2-10.	3.0	73
38	The single component geochemical map: Fact or fiction?. Journal of Geochemical Exploration, 2016, 162, 16-28.	3.2	73
39	Element levels in birch and spruce wood ashes — green energy?. Science of the Total Environment, 2008, 393, 191-197.	8.0	72
40	GEMAS: Spatial distribution of the pH of European agricultural and grazing land soil. Applied Geochemistry, 2014, 48, 207-216.	3.0	71
41	Geochemical mapping: technique or art?. Geochemistry: Exploration, Environment, Analysis, 2005, 5, 359-370.	0.9	64
42	Regional atmospheric deposition patterns of Ag, As, Bi, Cd, Hg, Mo, Sb and Tl in a 188,000 km2 area in the European arctic as displayed by terrestrial moss samples-long-range atmospheric transport vs local impact. Atmospheric Environment, 1997, 31, 3887-3901.	4.1	63
43	Comparing results from two continental geochemical surveys to world soil composition and deriving Predicted Empirical Global Soil (PEGS2) reference values. Earth and Planetary Science Letters, 2012, 319-320, 269-276.	4.4	61
44	Setting action levels for drinking water: Are we protecting our health or our economy (or our) Tj ETQq0 0 0 rgB1	[/Oyerlocl	₹ 19Jf 50 462
45	Distribution and pathways of heavy metals and sulphur in the vicinity of the copper-nickel smelters in Nikel and Zapoljarnij, Kola Peninsula, Russia, as revealed by different sample media. Applied Geochemistry, 1996, 11, 25-34.	3.0	58
46	Element contents in mountain birch leaves, bark and wood under different anthropogenic and geogenic conditions. Applied Geochemistry, 2007, 22, 1549-1566.	3.0	58
47	Regional variation of snowpack chemistry in the vicinity of Nikel and Zapoljarnij, Russia, northern Finland and Norway. Science of the Total Environment, 1996, 182, 147-158.	8.0	57
48	Topsoil (0–5 cm) composition in eight arctic catchments in northern Europe (Finland, Norway and) Tj ETQq0 (0 0 rgBT /0	Dverlock 10 Tf
49	Regional distribution of Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y in terrestrial moss within a 188,000 km2 area of the central Barents region: influence of geology, seaspray and human activity. Applied Geochemistry, 2001, 16, 137-159.	3.0	54
50	PAH-concentrations and compositions in the top 2cm of forest soils along a 120km long transect through agricultural areas, forests and the city of Oslo, Norway. Environmental Pollution, 2007, 145, 829-838.	7.5	54
51	The influence of a city on element contents of a terrestrial moss (Hylocomium splendens). Science of the Total Environment, 2006, 369, 419-432.	8.0	53
52	Regional patterns of heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V and Zn) and sulphur in terrestrial moss samples as indication of airborne pollution in a 188, 000 km2 area in northern Finland, Norway and Russia. Journal of Geochemical Exploration, 1997, 58, 269-281.	3.2	50
53	The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: A comparative study at the scale of the Czech Republic. Science of the Total Environment, 2011, 409, 2281-2297.	8.0	50
54	The influence of geology and land-use on inorganic stream water quality in the Oslo region, Norway. Applied Geochemistry, 2009, 24, 1862-1874.	3.0	49

#	Article	IF	CITATIONS
55	The biosphere: A homogeniser of Pb-isotope signals. Applied Geochemistry, 2008, 23, 705-722.	3.0	48
56	Ecogeochemical investigation, Kola peninsula: Sulphur and trace element content in snow. Water, Air, and Soil Pollution, 1995, 85, 749-754.	2.4	46
57	Emissions from the copper–nickel industry on the Kola Peninsula and at Noril'sk, Russia. Atmospheric Environment, 2009, 43, 1474-1480.	4.1	46
58	Snow composition in eight catchments in the central barents Euro-Arctic region. Atmospheric Environment, 1998, 32, 2609-2626.	4.1	45
59	Comparison of plant and precipitation chemistry in catchments with different levels of pollution on the Kola Peninsula, Russia. Science of the Total Environment, 1999, 243-244, 169-191.	8.0	43
60	Tellurium in the environment: current knowledge and identification of gaps. Environmental Chemistry, 2019, 16, 215.	1.5	43
61	Stream water geochemistry from selected catchments on the Kola Peninsula (NW Russia)and in neighbouring areas of Finland and Norway: 1. Elements levels and sources. Aquatic Geochemistry, 1996, 2, 149-168.	1.3	42
62	Comparison of elemental contents in O- and C-horizon soils from the surroundings of Nikel, Kola Peninsula, using different grain size fractions and extractions. Geoderma, 1998, 84, 65-87.	5.1	42
63	Processes influencing the chemical composition of the O-horizon of podzols along a 500-km north–south profile from the coast of the Barents Sea to the Arctic Circle. Geoderma, 2000, 95, 113-139.	5.1	42
64	Low-density geochemical mapping and the robustness of geochemical patterns. Geochemistry: Exploration, Environment, Analysis, 2008, 8, 219-227.	0.9	41
65	Influence of filtration on concentrations of 62 elements analysed on crystalline bedrock groundwater samples by ICP-MS. Science of the Total Environment, 1999, 234, 155-173.	8.0	39
66	Geochemical fingerprinting and source discrimination of agricultural soils at continental scale. Chemical Geology, 2015, 396, 1-15.	3.3	39
67	Identification of the co-existence of low total organic carbon contents and low pH values in agricultural soil in north-central Europe using hot spot analysis based on GEMAS project data. Science of the Total Environment, 2019, 678, 94-104.	8.0	39
68	Anthropogenic noble-metal enrichment of topsoil in the Monchegorsk area, Kola Peninsula, northwest Russia. Journal of Geochemical Exploration, 1997, 58, 283-289.	3.2	38
69	Pb-concentrations and Pb-isotope ratios in soils collected along an east–west transect across the United States. Applied Geochemistry, 2011, 26, 1623-1631.	3.0	38
70	Spatial distribution of lead and lead isotopes in soil B-horizon, forest-floor humus, grass (Avenella) Tj ETQq0 0 0 r 1205-1214.	gBT /Over 3.0	lock 10 Tf 50 36
71	Temperature-dependent leaching of chemical elements from mineral water bottle materials. Applied Geochemistry, 2012, 27, 1492-1498.	3.0	36

72Multielement regional geochemical reconnaissance as an aid to target selection in Irish Caledonian
terrains. Journal of Geochemical Exploration, 1993, 47, 63-87.3.2

#	Article	IF	CITATIONS
73	Impacts of Airborne Contamination on Regional Soil and Water Quality:Â The Kola Peninsula, Russia. Environmental Science & Technology, 2000, 34, 2727-2732.	10.0	35
74	Metallogenic provinces, geochemical provinces and regional geology— what causes large-scale patterns in low density geochemical maps of the C-horizon of podzols in Arctic Europe?. Applied Geochemistry, 2001, 16, 963-983.	3.0	34
75	Mass Balance between Emission and Deposition of Airborne Contaminants. Environmental Science & Technology, 1997, 31, 2966-2972.	10.0	33
76	Mineralogical fingerprints of industrial emissions — an example from Ni mining and smelting on the Kola Peninsula, NW Russia. Science of the Total Environment, 1998, 221, 189-200.	8.0	33
77	Monitoring accuracy and precision ? Improvements by introducing robust and resistant statistics. Mikrochimica Acta, 1986, 89, 31-42.	5.0	32
78	Does bottle type and acid-washing influence trace element analyses by ICP-MS on water samples?. Science of the Total Environment, 1999, 239, 111-130.	8.0	32
79	Magnetic properties of terrestrial moss (Hylocomium splendens) along a north–south profile crossing the city of Oslo, Norway. Science of the Total Environment, 2011, 409, 2252-2260.	8.0	32
80	Groundwater composition near the nickel—copper smelting industry on the Kola Peninsula, central Barents Region (NW Russia and NE Norway). Journal of Hydrology, 1998, 208, 92-107.	5.4	31
81	Distribution of Rb, Ga and Cs in agricultural land soils at European continental scale (GEMAS): Implications for weathering conditions and provenance. Chemical Geology, 2018, 479, 188-203.	3.3	31
82	Annual atmospheric deposition of 16 elements in eight catchments of the central Barents region. Science of the Total Environment, 1998, 220, 95-114.	8.0	30
83	Contemporary lead concentration and stable lead isotope ratio distribution in forest moss across the Czech Republic. Applied Geochemistry, 2014, 40, 51-60.	3.0	29
84	Inorganic chemical quality of European tap-water: 1. Distribution of parameters and regulatory compliance. Applied Geochemistry, 2015, 59, 200-210.	3.0	29
85	Platinum-group elements (Rh, Pt, Pd) and Au distribution in snow samples from the Kola Peninsula, NW Russia. Atmospheric Environment, 1999, 33, 3281-3290.	4.1	28
86	Stream water geochemistry from selected catchments on the Kola Peninsula (NW Russia) and in neighbouring areas of Finland and Norway: 2. Time-series. Aquatic Geochemistry, 1996, 2, 169-184.	1.3	27
87	Comparison of sulphur and heavy metal contents and their regional distribution in humus and moss samples from the vicinity of Nikel and Zapoljarnij, Kola Peninsula, Russia. Water, Air, and Soil Pollution, 1997, 98, 361-380.	2.4	26
88	Sub-continental-scale geochemical mapping: sampling, quality control and data analysis issues. Geochemistry: Exploration, Environment, Analysis, 2005, 5, 311-323.	0.9	26
89	Linking chemical elements in forest floor humus (Oh-horizon) in the Czech Republic to contamination sources. Environmental Pollution, 2011, 159, 1205-1214.	7.5	25
90	Blind Source Separation for Spatial Compositional Data. Mathematical Geosciences, 2015, 47, 753-770.	2.4	24

#	Article	IF	CITATIONS
91	Use of GEMAS data for risk assessment of cadmium in European agricultural and grazing land soil under the REACH Regulation. Applied Geochemistry, 2016, 74, 109-121.	3.0	24
92	GEMAS: Indium in agricultural and grazing land soil of Europe — Its source and geochemical distribution patterns. Journal of Geochemical Exploration, 2015, 154, 61-80.	3.2	23
93	Graphical statistics to explore the natural and anthropogenic processes influencing the inorganic quality of drinking water, ground water and surface water. Applied Geochemistry, 2018, 88, 133-148.	3.0	23
94	Quantifying Diffuse Contamination: Method and Application to Pb in Soil. Environmental Science & Technology, 2017, 51, 6719-6726.	10.0	22
95	GEMAS: CNS concentrations and C/N ratios in European agricultural soil. Science of the Total Environment, 2018, 627, 975-984.	8.0	22
96	Cadmium enrichment in topsoil: Separating diffuse contamination from biosphere-circulation signals. Science of the Total Environment, 2019, 651, 1344-1355.	8.0	22
97	Geosphere-biosphere circulation of chemical elements in soil and plant systems from a 100â€ ⁻ km transect from southern central Norway. Science of the Total Environment, 2018, 639, 129-145.	8.0	20
98	ls pure groundwater safe to drink?: natural "contamination' of groundwater in Norway. Geology Today, 1998, 14, 104-113.	0.9	19
99	Low density geochemical mapping and mineral exploration: application of the mineral system concept. Geochemistry: Exploration, Environment, Analysis, 2016, 16, 48-61.	0.9	19
100	White HDPE bottles as source of serious contamination of water samples with Ba and Zn. Science of the Total Environment, 2007, 374, 292-296.	8.0	18
101	Lake water geochemistry on the western Kola Peninsula, north-west Russia. Applied Geochemistry, 1999, 14, 787-805.	3.0	17
102	Hydrochemical distribution patterns in stream waters, TrÃ,ndelag, central Norway. Science of the Total Environment, 2001, 267, 1-21.	8.0	17
103	A soil geochemical background for northeastern Brazil. Geochemistry: Exploration, Environment, Analysis, 2012, 12, 197-209.	0.9	17
104	U-Th signatures of agricultural soil at the European continental scale (GEMAS): Distribution, weathering patterns and processes controlling their concentrations. Science of the Total Environment, 2018, 622-623, 1277-1293.	8.0	16
105	Comparison of stream sediment and soil sampling for regional exploration in the eastern Alps, Austria. Journal of Geochemical Exploration, 1988, 31, 75-85.	3.2	14
106	GEMAS: Geochemical background and mineral potential of emerging tech-critical elements in Europe revealed from low-sampling density geochemical mapping. Applied Geochemistry, 2019, 111, 104425.	3.0	14
107	GEMAS: Source, distribution patterns and geochemical behaviour of Ge in agricultural and grazing land soils at European continental scale. Applied Geochemistry, 2016, 72, 113-124.	3.0	12
108	Element distribution in Lactarius rufus in comparison to the underlying substrate along a transect in southern Norway. Applied Geochemistry, 2018, 97, 61-70.	3.0	12

#	Article	IF	CITATIONS
109	The large-scale distribution of Cu and Zn in sub- and topsoil: Separating topsoil bioaccumulation and natural matrix effects from diffuse and regional contamination. Science of the Total Environment, 2019, 655, 730-740.	8.0	12
110	Factors influencing NO3 concentrations in rain, stream water, ground water and podzol profiles of eight small catchments in the European Arctic. Environmental Pollution, 1998, 102, 559-568.	7.5	9
111	Comment on "Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment―by Tóth, C., Hermann, T., Szatmári, C., Pásztor, L Science of the Total Environment, 2017, 578, 236-241.	8.0	9
112	Reply to the comments on "The biosphere: A homogenizer of Pb-isotope signals―by Richard Bindler and William Shotyk. Applied Geochemistry, 2008, 23, 2527-2535.	3.0	8
113	GEMAS: Prediction of solidâ€solution partitioning coefficients (<i>K</i> _d) for cationic metals in soils using midâ€infrared diffuse reflectance spectroscopy. Environmental Toxicology and Chemistry, 2015, 34, 224-234.	4.3	8
114	Response of soil C- and O-horizon and terrestrial moss samples to various lithological units and mineralization in southern Norway. Geochemistry: Exploration, Environment, Analysis, 2018, 18, 252-262.	0.9	8
115	GEMAS: Geochemical distribution of Mg in agricultural soil of Europe. Journal of Geochemical Exploration, 2021, 221, 106706.	3.2	8
116	Regional Distribution of Pd, Pt and Au-Emissions from the Nickel Industry on the Kola Peninsula, NW-Russia, as Seen in Moss and Humus Samples. , 2006, , 53-70.		8
117	Quantifying diffuse contamination: Comparing silver and mercury in organogenic and minerogenic soil. Science of the Total Environment, 2022, 832, 155065.	8.0	8
118	Reply to the comment on "The biosphere: A homogenizer of Pb-isotope signals―by Gaël Le Roux, Jeroen Sonke, Christophe Cloquet, Dominique Aubert, and François de Vleeschouwer. Applied Geochemistry, 2008, 23, 2793-2798.	3.0	7
119	Reply to the comment "Bottled drinking water: Water contamination from bottle materials (glass,) Tj ETQq1 1 Geochemistry, 2010, 25, 1464-1465.	0.784314 3.0	4 rgBT /Over 7
120	Lead and stable Pb-isotope characteristics of tropical soils in north-eastern Brazil. Applied Geochemistry, 2011, 26, 2191-2200.	3.0	7
121	GEMAS: Prediction of solidâ€solution phase partitioning coefficients (<i>K</i> _d) for oxoanions and boric acid in soils using midâ€nfrared diffuse reflectance spectroscopy. Environmental Toxicology and Chemistry, 2015, 34, 235-246.	4.3	7
122	Total sulphur in leaves of several plant species from nine catchments within a 1 500 000 km2 area in northern Europe: local vs. regional variability. Geochemistry: Exploration, Environment, Analysis, 2003, 3, 205-215.	n 0.9	6
123	The response of 12 different plant materials and one mushroom to Mo and Pb mineralization along a 100-km transect in southern central Norway. Geochemistry: Exploration, Environment, Analysis, 2018, 18, 204-215.	0.9	6
124	Excess Cr and Ni in top soil: Comparing the effect of geology, diffuse contamination, and biogenic influence. Science of the Total Environment, 2022, 843, 157059.	8.0	6
125	Reliability of geochemical analyses: Deja vu all over again. Science of the Total Environment, 2019, 670, 138-148.	8.0	5
126	Reply to the comment on "Geochemical gradients in soil O-horizon samples from southern Norway: Natural or anthropogenic?―by Eiliv Steinnes. Applied Geochemistry, 2009, 24, 2023-2025.	3.0	4

#	Article	IF	CITATIONS
127	Publicly available datasets on thallium (TI) in the environmentâ€"a comment on "Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods―by Bozena Karbowska, Environ Monit Assess (2016) 188:640 (DOI 10.1007/s10661-016-5647-y). Environmental Monitoring and Assessment, 2017, 189, 232.	2.7	4
128	Background values of gold, potentially toxic elements and emerging high-tech critical elements in surface water collected in a remote northern European environment. Geochemistry: Exploration, Environment, Analysis, 2018, 18, 185-195.	0.9	3
129	High-fluoride drinking water. A health problem in the Ethiopian Rift Valley 1. Assessment of lateritic soils as defluoridating agents. Oral Health & Preventive Dentistry, 2003, 1, 141-8.	0.5	3
130	Data Analysis for Urban Geochemical Data. , 2011, , 99-115.		2
131	European Ground Water Geochemistry Using Bottled Water as a Sampling Medium. NATO Science for Peace and Security Series C: Environmental Security, 2012, , 115-139.	0.2	2
132	Comment on "Heavy metals in agricultural soil of the European Union with implications for food safety―by Tóth, G., Hermann, T., Da Silva, M.R. and Montanarella, L Environment International, 2016, 97, 258-263.	10.0	1
133	Fifty-one chemical elements in till from the Oppdal region, Mid-Norway: relation to mineralization, Quaternary and bedrock geology. Geochemistry: Exploration, Environment, Analysis, 2018, 18, 229-240.	0.9	1
134	Foreword by the Chairman of the EuroGeoSurveys Geochemistry Expert Group. Journal of Geochemical Exploration, 2010, 107, v-vi.	3.2	0
135	The Scale of an Urban Contamination Footprint: Results from a Transect through Oslo, Norway. , 2011, , 232-244.		0
136	Factors influencing NO3 concentrations in rain, stream water, ground water and podzol profiles of		0

⁶ eight small catchments in the European Arctic. , 1998, , 559-568.