Lajos Haracska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10525515/publications.pdf Version: 2024-02-01

Ι λΙΟς Ηλρλοςκλ

#	Article	IF	CITATIONS
1	The Rad5 Helicase and RING Domains Contribute to Genome Stability through their Independent Catalytic Activities. Journal of Molecular Biology, 2022, 434, 167437.	4.2	4
2	A series of xanthenes inhibiting Rad6 function and Rad6-Rad18 interaction in the PCNA ubiquitination cascade. IScience, 2022, 25, 104053.	4.1	4
3	The Combination of Single-Cell and Next-Generation Sequencing Can Reveal Mosaicism for BRCA2 Mutations and the Fine Molecular Details of Tumorigenesis. Cancers, 2021, 13, 2354.	3.7	4
4	Coordinated Cut and Bypass: Replication of Interstrand Crosslink-Containing DNA. Frontiers in Cell and Developmental Biology, 2021, 9, 699966.	3.7	3
5	BC-Monitor: Towards a Routinely Accessible Circulating Tumor DNA-Based Tool for Real-Time Monitoring Breast Cancer Progression and Treatment Effectiveness. Cancers, 2021, 13, 3489.	3.7	3
6	SerpinB10, a Serine Protease Inhibitor, Is Implicated in UV-Induced Cellular Response. International Journal of Molecular Sciences, 2021, 22, 8500.	4.1	2
7	A Regenerative Approach to Canine Osteoarthritis Using Allogeneic, Adipose-Derived Mesenchymal Stem Cells. Safety Results of a Long-Term Follow-Up. Frontiers in Veterinary Science, 2020, 7, 510.	2.2	9
8	Robust high-throughput assays to assess discrete steps in ubiquitination and related cascades. BMC Molecular and Cell Biology, 2020, 21, 21.	2.0	6
9	Multilevel structure–activity profiling reveals multiple green tea compound families that each modulate ubiquitin-activating enzyme and ubiquitination by a distinct mechanism. Scientific Reports, 2019, 9, 12801.	3.3	8
10	Opposing Roles of FANCJ and HLTF Protect Forks and Restrain Replication during Stress. Cell Reports, 2018, 24, 3251-3261.	6.4	59
11	DNA-dependent protease activity of human Spartan facilitates replication of DNA–protein crosslink-containing DNA. Nucleic Acids Research, 2017, 45, gkw1315.	14.5	70
12	The DNA-binding box of human SPARTAN contributes to the targeting of Polî• to DNA damage sites. DNA Repair, 2017, 49, 33-42.	2.8	13
13	Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. Canadian Journal of Veterinary Research, 2017, 81, 73-78.	0.2	24
14	Simultaneous detection of <i>BRCA</i> mutations and large genomic rearrangements in germline DNA and FFPE tumor samples. Oncotarget, 2016, 7, 61845-61859.	1.8	24
15	The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis. Nucleic Acids Research, 2016, 44, 3176-3189.	14.5	32
16	Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Research, 2015, 43, gkv896.	14.5	51
17	FF483–484 motif of human Poll̂· mediates its interaction with the POLD2 subunit of Poll̂´ and contributes to DNA damage tolerance. Nucleic Acids Research, 2015, 43, 2116-2125.	14.5	27
18	Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Research, 2014, 42, 1711-1720.	14.5	53

LAJOS HARACSKA

#	Article	IF	CITATIONS
19	Def1 Promotes the Degradation of Pol3 for Polymerase Exchange to Occur During DNA-Damage–Induced Mutagenesis in Saccharomyces cerevisiae. PLoS Biology, 2014, 12, e1001771.	5.6	33
20	Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair, 2013, 12, 691-698.	2.8	65
21	Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO Journal, 2013, 32, 742-755.	7.8	67
22	Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay. PLoS ONE, 2013, 8, e70391.	2.5	18
23	Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Research, 2012, 40, 6049-6059.	14.5	78
24	Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Research, 2012, 40, 10795-10808.	14.5	85
25	Polyubiquitinated PCNA Recruits the ZRANB3 Translocase to Maintain Genomic Integrity after Replication Stress. Molecular Cell, 2012, 47, 396-409.	9.7	227
26	A novel ubiquitin binding mode in the S. cerevisiae translesion synthesis DNA polymerase η. Molecular BioSystems, 2011, 7, 1874.	2.9	10
27	Coordinated protein and DNA remodeling by human HLTF on stalled replication fork. Proceedings of the United States of America, 2011, 108, 14073-14078.	7.1	66
28	Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair, 2010, 9, 257-267.	2.8	157
29	Chemically ubiquitylated PCNA as a probe for eukaryotic translesion DNA synthesis. Nature Chemical Biology, 2010, 6, 270-272.	8.0	119
30	Role of Double-Stranded DNA Translocase Activity of Human HLTF in Replication of Damaged DNA. Molecular and Cellular Biology, 2010, 30, 684-693.	2.3	158
31	Reply to Sabbioneda et al.: Role of ubiquitin-binding motif of human DNA polymerase η in translesion synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, .	7.1	4
32	Separate Domains of Rev1 Mediate Two Modes of DNA Damage Bypass in Mammalian Cells. Molecular and Cellular Biology, 2009, 29, 3113-3123.	2.3	88
33	Role of PCNA-dependent stimulation of 3'-phosphodiesterase and 3'-5' exonuclease activities of human Ape2 in repair of oxidative DNA damage. Nucleic Acids Research, 2009, 37, 4247-4255.	14.5	64
34	Mammalian polymerase ζ is essential for post-replication repair of UV-induced DNA lesions. DNA Repair, 2009, 8, 1444-1451.	2.8	59
35	Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase η in translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17724-17729.	7.1	106
36	Regulation of polymerase exchange between Poll· and Poll´ by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5361-5366.	7.1	117

LAJOS HARACSKA

#	Article	IF	CITATIONS
37	Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3768-3773.	7.1	201
38	Complex Formation of Yeast Rev1 with DNA Polymerase Ε. Molecular and Cellular Biology, 2007, 27, 8401-8408.	2.3	47
39	Yeast Rad5 Protein Required for Postreplication Repair Has a DNA Helicase Activity Specific for Replication Fork Regression. Molecular Cell, 2007, 28, 167-175.	9.7	252
40	Mutations in the Ubiquitin Binding UBZ Motif of DNA Polymerase η Do Not Impair Its Function in Translesion Synthesis during Replication. Molecular and Cellular Biology, 2007, 27, 7266-7272.	2.3	49
41	Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18107-18112.	7.1	204
42	Role of Hoogsteen Edge Hydrogen Bonding at Template Purines in Nucleotide Incorporation by Human DNA Polymerase Î ¹ . Molecular and Cellular Biology, 2006, 26, 6435-6441.	2.3	33
43	Mms2-Ubc13-Dependent and -Independent Roles of Rad5 Ubiquitin Ligase in Postreplication Repair and Translesion DNA Synthesis in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 7783-7790.	2.3	100
44	Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6477-6482.	7.1	124
45	A Single Domain in Human DNA Polymerase Î ¹ Mediates Interaction with PCNA: Implications for Translesion DNA Synthesis. Molecular and Cellular Biology, 2005, 25, 1183-1190.	2.3	55
46	Complex Formation of Yeast Rev1 and Rev7 Proteins: a Novel Role for the Polymerase-Associated Domain. Molecular and Cellular Biology, 2005, 25, 9734-9740.	2.3	77
47	Trf4 and Trf5 Proteins of Saccharomyces cerevisiae Exhibit Poly(A) RNA Polymerase Activity but No DNA Polymerase Activity. Molecular and Cellular Biology, 2005, 25, 10183-10189.	2.3	51
48	Efficient and Error-Free Replication past a Minor-Groove N 2 -Guanine Adduct by the Sequential Action of Yeast Rev1 and DNA Polymerase I¶. Molecular and Cellular Biology, 2004, 24, 6900-6906.	2.3	99
49	Opposing Effects of Ubiquitin Conjugation and SUMO Modification of PCNA on Replicational Bypass of DNA Lesions in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2004, 24, 4267-4274.	2.3	189
50	Yeast DNA Polymerase ζ Is an Efficient Extender of Primer Ends Opposite from 7,8-Dihydro-8-Oxoguanine and O 6 -Methylguanine. Molecular and Cellular Biology, 2003, 23, 1453-1459.	2.3	105
51	A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes and Development, 2003, 17, 2777-2785.	5.9	40
52	Role of human DNA polymerase as an extender in translesion synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16000-16005.	7.1	153
53	Yeast Rev1 Protein Is a G Template-specific DNA Polymerase. Journal of Biological Chemistry, 2002, 277, 15546-15551.	3.4	144
54	Stimulation of 3′→5′ Exonuclease and 3′-Phosphodiesterase Activities of Yeast Apn2 by Proliferating C Nuclear Antigen. Molecular and Cellular Biology, 2002, 22, 6480-6486.	cell _{2.3}	57

LAJOS HARACSKA

#	Article	IF	CITATIONS
55	Stimulation of DNA Synthesis Activity of Human DNA Polymerase $\hat{I}^{\rm g}$ by PCNA. Molecular and Cellular Biology, 2002, 22, 784-791.	2.3	171
56	Interaction with PCNA Is Essential for Yeast DNA Polymerase η Function. Molecular Cell, 2001, 8, 407-415.	9.7	199
57	Role of DNA Polymerase η in the Bypass of a (6-4) TT Photoproduct. Molecular and Cellular Biology, 2001, 21, 3558-3563.	2.3	190
58	Physical and Functional Interactions of Human DNA Polymerase Ε with PCNA. Molecular and Cellular Biology, 2001, 21, 7199-7206.	2.3	231
59	Inefficient Bypass of an Abasic Site by DNA Polymerase Ε. Journal of Biological Chemistry, 2001, 276, 6861-6866.	3.4	105
60	3′-Phosphodiesterase and 3′→5′ Exonuclease Activities of Yeast Apn2 Protein and Requirement of These Activities for Repair of Oxidative DNA Damage. Molecular and Cellular Biology, 2001, 21, 1656-1661.	² 2.3	66
61	Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase η. Nature Genetics, 2000, 25, 458-461.	21.4	342
62	Eukaryotic polymerases \hat{l}^1 and $\hat{l}\P$ act sequentially to bypass DNA lesions. Nature, 2000, 406, 1015-1019.	27.8	622
63	Replication past O 6 -Methylguanine by Yeast and Human DNA Polymerase Ε. Molecular and Cellular Biology, 2000, 20, 8001-8007.	2.3	137
64	Replication pastO6-Methylguanine by Yeast and Human DNA Polymerase Ε. Molecular and Cellular Biology, 2000, 20, 8001-8007.	2.3	8