
Selvarangan Ponnazhagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/105247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational Simulation of Exosome Transport in Tumor Microenvironment. Frontiers in Medicine, 2021, 8, 643793.	2.6	7
2	Extracellular Vesicle Mediated Tumor-Stromal Crosstalk Within an Engineered Lung Cancer Model. Frontiers in Oncology, 2021, 11, 654922.	2.8	8
3	Hedgehog Signaling Regulates Metabolism and Polarization of Mammary Tumor-Associated Macrophages. Cancer Research, 2021, 81, 5425-5437.	0.9	50
4	Indoleamine 2, 3-Dioxygenase Promotes Aryl Hydrocarbon Receptor-Dependent Differentiation Of Regulatory B Cells in Lung Cancer. Frontiers in Immunology, 2021, 12, 747780.	4.8	8
5	A conserved aromatic moiety in the ectodomain is a key determinant for structural integrity and protein trafficking of TNFR superfamily. FASEB Journal, 2020, 34, 15687-15700.	0.5	0
6	RANKL-Targeted Combination Therapy with Osteoprotegerin Variant Devoid of TRAIL Binding Exerts Biphasic Effects on Skeletal Remodeling and Antitumor Immunity. Molecular Cancer Therapeutics, 2020, 19, 2585-2597.	4.1	3
7	Adeno-Associated Virus D-Sequence-Mediated Suppression of Expression of a Human Major Histocompatibility Class II Gene: Implications in the Development of Adeno-Associated Virus Vectors for Modulating Humoral Immune Response. Human Gene Therapy, 2020, 31, 565-574.	2.7	5
8	Mechanical strain induces phenotypic changes in breast cancer cells and promotes immunosuppression in the tumor microenvironment. Laboratory Investigation, 2020, 100, 1503-1516.	3.7	27
9	Runx2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites. Cancer Research, 2020, 80, 1036-1048.	0.9	18
10	Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Research, 2020, 80, 1615-1623.	0.9	120
11	Recombinant AAV-CEA Tumor Vaccine in Combination with an Immune Adjuvant Breaks Tolerance and Provides Protective Immunity. Molecular Therapy - Oncolytics, 2019, 12, 41-48.	4.4	29
12	Structural determinants and genetic modifications enhance BMP2 stability and extracellular secretion. FASEB BioAdvances, 2019, 1, 180-190.	2.4	11
13	Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations. Laboratory Investigation, 2019, 99, 93-106.	3.7	67
14	Pathology, Chemoprevention, and Preclinical Models for Target Validation in Barrett Esophagus. Cancer Research, 2018, 78, 3747-3754.	0.9	2
15	Myeloid-Derived Suppressor Cells Impair B Cell Responses in Lung Cancer through IL-7 and STAT5. Journal of Immunology, 2018, 201, 278-295.	0.8	89
16	Endostatin inhibits androgenâ€independent prostate cancer growth by suppressing nuclear receptorâ€mediated oxidative stress. FASEB Journal, 2017, 31, 1608-1619.	0.5	11
17	Location of tumor affects local and distant immune cell type and number. Immunity, Inflammation and Disease, 2017, 5, 85-94.	2.7	14
18	Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment. Scientific Reports, 2017, 7. 8678.	3.3	41

#	Article	IF	CITATIONS
19	Mesenchymal stem cells expressing osteoprotegerin variants inhibit osteolysis in a murine model of multiple myeloma. Blood Advances, 2017, 1, 2375-2385.	5.2	8
20	Osteoclast proton pump regulator Atp6v1c1 enhances breast cancer growth by activating the mTORC1 pathway and bone metastasis by increasing V-ATPase activity. Oncotarget, 2017, 8, 47675-47690.	1.8	33
21	Effects of Cellular Methylation on Transgene Expression and Site-Specific Integration of Adeno-Associated Virus. Genes, 2017, 8, 232.	2.4	12
22	Resveratrol induces mitochondria-mediated, caspase-independent apoptosis in murine prostate cancer cells. Oncotarget, 2017, 8, 20895-20908.	1.8	46
23	Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget, 2016, 7, 75407-75424.	1.8	66
24	Prostate cancer-derived cathelicidin-related antimicrobial peptide facilitates macrophage differentiation and polarization of immature myeloid progenitors to protumorigenic macrophages. Prostate, 2016, 76, 624-636.	2.3	32
25	Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone, 2016, 93, 113-124.	2.9	16
26	SOCS3 Deficiency in Myeloid Cells Promotes Tumor Development: Involvement of STAT3 Activation and Myeloid-Derived Suppressor Cells. Cancer Immunology Research, 2015, 3, 727-740.	3.4	54
27	Endostatin: A novel inhibitor of androgen receptor function in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1392-1397.	7.1	37
28	Variants of Osteoprotegerin Lacking TRAIL Binding for Therapeutic Bone Remodeling in Osteolytic Malignancies. Molecular Cancer Research, 2015, 13, 819-827.	3.4	10
29	The dual targeting of immunosuppressive cells and oxidants promotes effector and memory T-cell functions against lung cancer. Oncolmmunology, 2014, 3, e27401.	4.6	4
30	Anterior Gradient Protein-2 Is a Regulator of Cellular Adhesion in Prostate Cancer. PLoS ONE, 2014, 9, e89940.	2.5	17
31	Detection of Merkel cell polyomavirus in formalin-fixed, paraffin-embedded tissue of Merkel cell carcinoma and correlation with prognosis. Romanian Journal of Morphology and Embryology, 2014, 55, 1057-62.	0.8	4
32	Myeloid-Derived Suppressor Cells Function as Novel Osteoclast Progenitors Enhancing Bone Loss in Breast Cancer. Cancer Research, 2013, 73, 672-682.	0.9	153
33	Muscle-Directed Anti-Aβ Single-Chain Antibody Delivery via AAV1 Reduces Cerebral Aβ Load in an Alzheimer's Disease Mouse Model. Journal of Molecular Neuroscience, 2013, 49, 277-288.	2.3	20
34	Polyglutamate directed coupling of bioactive peptides for the delivery ofÂosteoinductive signals on allograft bone. Biomaterials, 2013, 34, 1506-1513.	11.4	34
35	Role of plasmacytoid dendritic cells in breast cancer bone dissemination. Oncolmmunology, 2013, 2, e22983.	4.6	17
36	Enhancement of Antitumor Immunity in Lung Cancer by Targeting Myeloid-Derived Suppressor Cell Pathways. Cancer Research, 2013, 73, 6609-6620.	0.9	75

#	Article	IF	CITATIONS
37	Myeloid-Derived Suppressor Cells as Osteoclast Progenitors: A Novel Target for Controlling Osteolytic Bone Metastasis. Cancer Research, 2013, 73, 4606-4610.	0.9	69
38	Myeloid-derived suppressor cells as a novel target for the control of osteolytic bone disease. Oncolmmunology, 2013, 2, e24064.	4.6	12
39	Modulation of indoleamine 2,3â€dioxygenase pathway by a combination therapy strategy targeting myeloid derived suppressor cell function in lung cancer. FASEB Journal, 2013, 27, 1105.25.	0.5	0
40	Differential effects of low-dose decitabine on immune effector and suppressor responses in melanoma-bearing mice. Cancer Immunology, Immunotherapy, 2012, 61, 1441-1450.	4.2	33
41	Noggin Is Novel Inducer of Mesenchymal Stem Cell Adipogenesis. Journal of Biological Chemistry, 2012, 287, 12241-12249.	3.4	23
42	Depletion of Plasmacytoid Dendritic Cells Inhibits Tumor Growth and Prevents Bone Metastasis of Breast Cancer Cells. Journal of Immunology, 2012, 189, 4258-4265.	0.8	155
43	Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone, 2012, 50, 1012-1018.	2.9	96
44	Anti-Amyloid-Î ² Single-Chain Antibody Brain Delivery Via AAV Reduces Amyloid Load But May Increase Cerebral Hemorrhages in an Alzheimer's Disease Mouse Model. Journal of Alzheimer's Disease, 2011, 27, 23-38.	2.6	33
45	LLâ $\in 37$ as a therapeutic target for late stage prostate cancer. Prostate, 2011, 71, 659-670.	2.3	43
46	Conditionally Replicating Adenovirus Expressing TIMP2 for Ovarian Cancer Therapy. Clinical Cancer Research, 2011, 17, 538-549.	7.0	33
47	Conditionally Replicating Adenovirus Expressing TIMP2 Increases Survival in a Mouse Model of Disseminated Ovarian Cancer. PLoS ONE, 2011, 6, e25131.	2.5	9
48	Therapeutic potential of adult bone marrowâ€derived mesenchymal stem cells in diseases of the skeleton. Journal of Cellular Biochemistry, 2010, 111, 249-257.	2.6	110
49	Mesenchymal Stem Cells Expressing Osteogenic and Angiogenic Factors Synergistically Enhance Bone Formation in a Mouse Model of Segmental Bone Defect. Molecular Therapy, 2010, 18, 1026-1034.	8.2	143
50	Bacteriophage hyaluronidase effectively inhibits growth, migration and invasion by disrupting hyaluronan-mediated Erk1/2 activation and RhoA expression in human breast carcinoma cells. Cancer Letters, 2010, 298, 238-249.	7.2	13
51	Therapeutic Potential of Adult Bone Marrow–Derived Mesenchymal Stem Cells in Prostate Cancer Bone Metastasis. Clinical Cancer Research, 2009, 15, 7175-7185.	7.0	50
52	Tumoristatic effects of endostatin in prostate cancer is dependent on androgen receptor status. Prostate, 2009, 69, 1055-1066.	2.3	10
53	Free fatty acids enhance breast cancer cell migration through plasminogen activator inhibitor-1 and SMAD4. Laboratory Investigation, 2009, 89, 1221-1228.	3.7	46
54	Therapeutic Potential of Mesenchymal Stem Cells Producing Interferon-α in a Mouse Melanoma Lung Metastasis Model. Stem Cells, 2008, 26, 2332-2338.	3.2	181

#	Article	IF	CITATIONS
55	Telomere Maintenance in Laser Capture Microdissection–Purified Barrett's Adenocarcinoma Cells and Effect of Telomerase Inhibition <i>In vivo</i> . Clinical Cancer Research, 2008, 14, 4971-4980.	7.0	39
56	Systemic Osteoprotegerin Gene Therapy Restores Tumor-induced Bone Loss in a Therapeutic Model of Breast Cancer Bone Metastasis. Molecular Therapy, 2008, 16, 871-878.	8.2	32
57	Silencing of Transforming Growth Factor-β1 <i>In situ</i> by RNA Interference for Breast Cancer: Implications for Proliferation and Migration <i>In vitro</i> and Metastasis <i>In vivo</i> . Clinical Cancer Research, 2008, 14, 4961-4970.	7.0	48
58	Genetic Modification of Adeno-Associated Viral Vector Type 2 Capsid Enhances Gene Transfer Efficiency in Polarized Human Airway Epithelial Cells. Human Gene Therapy, 2008, 19, 1407-1414.	2.7	27
59	Clinical significance of a novel single nucleotide polymorphism in the 5' untranslated region of the Rabphillin-3A-Like gene in colorectal adenocarcinoma. Frontiers in Bioscience - Landmark, 2008, 13, 1050.	3.0	8
60	Notch1 Augments Intracellular Trafficking of Adeno-Associated Virus Type 2. Journal of Virology, 2007, 81, 2069-2073.	3.4	12
61	Bone homing of mesenchymal stem cells by ectopic $\hat{I}\pm4$ integrin expression. FASEB Journal, 2007, 21, 3917-3927.	0.5	153
62	Effects of Sustained Antiangiogenic Therapy in Multistage Prostate Cancer in TRAMP Model. Cancer Research, 2007, 67, 5789-5797.	0.9	44
63	Anti-Aβ single-chain antibody delivery via adeno-associated virus for treatment of Alzheimer's disease. Neurobiology of Disease, 2006, 23, 502-511.	4.4	84
64	Antiangiogenic cancer gene therapy by adeno-associated virus 2-mediated stable expression of the soluble FMS-like tyrosine kinase-1 receptor. Cancer Gene Therapy, 2005, 12, 26-34.	4.6	31
65	Determination of osteoprogenitor-specific promoter activity in mouse mesenchymal stem cells by recombinant adeno-associated virus transduction. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1731, 95-103.	2.4	25
66	Protein Transduction of Dendritic Cells for NY-ESO-1-Based Immunotherapy of Myeloma. Cancer Research, 2005, 65, 10041-10049.	0.9	61
67	Genomic Stability of Self-Complementary Adeno-Associated Virus 2 During Early Stages of Transduction in Mouse Muscleln Vivo. Human Gene Therapy, 2005, 16, 1047-1057.	2.7	26
68	Recombinant adeno-associated virus 2-mediated antiangiogenic prevention in a mouse model of intraperitoneal ovarian cancer. Clinical Cancer Research, 2005, 11, 1342-7.	7.0	18
69	Augmentation of Antitumor Activity of a Recombinant Adeno-Associated Virus Carcinoembryonic Antigen Vaccine with Plasmid Adjuvant. Human Gene Therapy, 2004, 15, 856-864.	2.7	16
70	Adeno-Associated Virus 2-Mediated Antiangiogenic Cancer Gene Therapy. Cancer Research, 2004, 64, 1781-1787.	0.9	74
71	Parvovirus vectors for cancer gene therapy. Expert Opinion on Biological Therapy, 2004, 4, 53-64.	3.1	10
72	Osteogenic Differentiation of Recombinant Adeno-Associated Virus 2-Transduced Murine Mesenchymal Stem Cells and Development of an Immunocompetent Mouse Model forEx VivoOsteoporosis Gene Therapy. Human Gene Therapy, 2004, 15, 1197-1206.	2.7	59

#	Article	IF	CITATIONS
73	Gene Therapy for Osteoinduction. Current Gene Therapy, 2004, 4, 287-296.	2.0	3
74	Conjugate-Based Targeting of Adeno-Associated Virus Vectors. , 2003, , 201-219.		0
75	Conjugate-Based Targeting of Recombinant Adeno-Associated Virus Type 2 Vectors by Using Avidin-Linked Ligands. Journal of Virology, 2002, 76, 12900-12907.	3.4	116
76	Adenoassociated Virus Vectors for Genetic Immunization. Immunologic Research, 2002, 26, 247-254.	2.9	7
77	Adeno-Associated Virus Type 2-Mediated Transduction of Human Monocyte-Derived Dendritic Cells: Implications for Ex Vivo Immunotherapy. Journal of Virology, 2001, 75, 9493-9501.	3.4	76
78	Adeno-Associated Virus 2-Mediated Transduction and Erythroid Lineage-Restricted Expression from Parvovirus B19p6 Promoter in Primary Human Hematopoietic Progenitor Cells. Journal of Hematotherapy and Stem Cell Research, 1999, 8, 585-592.	1.8	17
79	Adeno-Associated Virus Type 2-Mediated Gene Transfer: Role of Epidermal Growth Factor Receptor Protein Tyrosine Kinase in Transgene Expression. Journal of Virology, 1998, 72, 9835-9843.	3.4	92
80	Adeno-Associated Virus Type 2-Mediated Gene Transfer: Correlation of Tyrosine Phosphorylation of the Cellular Single-Stranded D Sequence-Binding Protein with Transgene Expression in Human Cells In Vitro and Murine Tissues In Vivo. Journal of Virology, 1998, 72, 1593-1599.	3.4	118
81	Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes. Journal of Virology, 1998, 72, 5224-5230.	3.4	46
82	Characterization of Wild-Type Adeno-Associated Virus Type 2-Like Particles Generated during Recombinant Viral Vector Production and Strategies for Their Elimination. Journal of Virology, 1998, 72, 5472-5480.	3.4	61
83	Evaluation of recombinant adeno-associated virus as a gene transfer vector for the retina. Current Eye Research, 1997, 16, 949-956.	1.5	71
84	Lack of Site-Specific Integration of the Recombinant Adeno-Associated Virus 2 Genomes in Human Cells. Human Gene Therapy, 1997, 8, 275-284.	2.7	142
85	Adeno-associated virus 2-mediated gene transfer in vivo: organ-tropism and expression of transduced sequences in mice. Gene, 1997, 190, 203-210.	2.2	128
86	Mousesilver.mutation is caused by a single base insertion in the putative cytoplasmic domain of Pmel 17. Nucleic Acids Research, 1995, 23, 154-158.	14.5	77
87	Rescue and Replication Signals of the Adeno-associated Virus 2 Genome. Journal of Molecular Biology, 1995, 250, 573-580.	4.2	67
88	Cord Blood Transplantation and the Potential for Gene Therapy Annals of the New York Academy of Sciences, 1995, 770, 105-115.	3.8	15
89	Structural Organization of the Human Tyrosinase Gene and Sequence Analysis and Characterization of its Promoter Region. Journal of Investigative Dermatology, 1994, 102, 744-748.	0.7	45