
Wenxiao Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10523050/publications.pdf Version: 2024-02-01

WENNIAO HUANC

#	Article	IF	CITATIONS
1	Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries. Nano Letters, 2021, 21, 2074-2080.	9.1	37
2	Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework. ACS Energy Letters, 2021, 6, 816-825.	17.4	46
3	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Liâ€lon and Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2100372.	19.5	114
4	Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nature Energy, 2021, 6, 790-798.	39.5	198
5	Resolve cathode electrolyte interphase in lithium batteries with cryo-EM. Microscopy and Microanalysis, 2021, 27, 2188-2190.	0.4	0
6	Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nature Communications, 2021, 12, 6122.	12.8	86
7	A Morphologically Stable Li/Electrolyte Interface for Allâ€Solidâ€State Batteries Enabled by 3Dâ€Micropatterned Garnet. Advanced Materials, 2021, 33, e2104009.	21.0	76
8	Dynamic spatial progression of isolated lithium during battery operations. Nature, 2021, 600, 659-663.	27.8	111
9	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5, 786-793.	39.5	168
10	Microclusters of Kinked Silicon Nanowires Synthesized by a Recyclable Iodide Process for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Energy Materials, 2020, 10, 2002108.	19.5	57
11	Designing a Nanoscale Three-phase Electrochemical Pathway to Promote Pt-catalyzed Formaldehyde Oxidation. Nano Letters, 2020, 20, 8719-8724.	9.1	15
12	Electrode Design with Integration of High Tortuosity and Sulfur-Philicity for High-Performance Lithium-Sulfur Battery. Matter, 2020, 2, 1605-1620.	10.0	83
13	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020, 5, 526-533.	39.5	642
14	Unravelling Degradation Mechanisms and Atomic Structure of Organic-Inorganic Halide Perovskites by Cryo-EM. Joule, 2019, 3, 2854-2866.	24.0	99
15	Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Research, 2018, 11, 762-768.	10.4	94
16	Wearable Thermoelectric Devices Based on Au-Decorated Two-Dimensional MoS ₂ . ACS Applied Materials & Interfaces, 2018, 10, 33316-33321.	8.0	57
17	Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy, 2016, 26, 172-179.	16.0	178
18	Organic Electronics: Layered, Nanonetwork Composite Cathodes for Flexible, Highâ€Efficiency, Organic Light Emitting Devices (Adv. Funct. Mater. 28/2015). Advanced Functional Materials, 2015, 25, 4370-4370.	14.9	0

WENXIAO HUANG

#	Article	IF	CITATIONS
19	Solution-processed yellow-white light-emitting diodes based on mixed-solvent dispersed luminescent ZnO nanocrystals. Applied Physics Letters, 2015, 106, 263506.	3.3	6
20	Layered, Nanonetwork Composite Cathodes for Flexible, Highâ€Efficiency, Organic Light Emitting Devices. Advanced Functional Materials, 2015, 25, 4397-4404.	14.9	12
21	Aluminium nanoparticles synthesized by a novel wet chemical method and used to enhance the performance of polymer solar cells by the plasmonic effect. Journal of Materials Chemistry C, 2015, 3, 4099-4103.	5.5	20
22	Flexible n-type thermoelectric films based on Cu-doped Bi2Se3 nanoplate and Polyvinylidene Fluoride composite with decoupled Seebeck coefficient and electrical conductivity. Nano Energy, 2015, 18, 306-314.	16.0	119
23	Solutionâ€Processable Holeâ€Generation Layer and Electronâ€Transporting Layer: Towards Highâ€Performance, Alternatingâ€Currentâ€Driven, Fieldâ€Induced Polymer Electroluminescent Devices. Advanced Functional Materials, 2014, 24, 2677-2688.	14.9	37
24	Hydrazine-Free Surface Modification of CZTSe Nanocrystals with All-Inorganic Ligand. Journal of Physical Chemistry C, 2014, 118, 30302-30308.	3.1	24
25	Surface modification enabled carrier mobility adjustment in CZTS nanoparticle thin films. Solar Energy Materials and Solar Cells, 2014, 127, 188-192.	6.2	17
26	Cu2ZnSnS <i>x</i> O4â^' <i>x</i> and Cu2ZnSnS <i>x</i> Se4â^' <i>x</i> : First principles simulations of optimal alloy configurations and their energies. Journal of Applied Physics, 2014, 115, .	2.5	22
27	Evaluation of methods to extract parameters from current–voltage characteristics of solar cells. Solar Energy, 2013, 90, 51-57.	6.1	69
28	Effects of electrode modification using calcium on the performance of alternating current field-induced polymer electroluminescent devices. Applied Physics Letters, 2013, 102, 253302.	3.3	16
29	Spectral response of fiber-based organic photovoltaics. Solar Energy Materials and Solar Cells, 2012, 98, 273-276.	6.2	21
30	Thickness dependence of the MoO3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices. Applied Physics Letters, 2011, 98, 103305.	3.3	47