Mark D Biggin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10521259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Multichannel Gel Electrophoresis and Continuous Fraction Collection Apparatus for High-Throughput Protein Separation and Characterization. Methods in Molecular Biology, 2019, 1855, 437-448.	0.9	1
2	Exploiting regulatory heterogeneity to systematically identify enhancers with high accuracy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 900-908.	7.1	20
3	Quantitating translational control: mRNA abundance-dependent and independent contributions and the mRNA sequences that specify them. Nucleic Acids Research, 2017, 45, 11821-11836.	14.5	28
4	Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated in Independent Assays More Frequently Than Previously Reported. Molecular and Cellular Proteomics, 2016, 15, 1539-1555.	3.8	16
5	Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions. Molecular and Cellular Proteomics, 2016, 15, 2186-2202.	3.8	12
6	Statistics requantitates the central dogma. Science, 2015, 347, 1066-1067.	12.6	155
7	System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ, 2014, 2, e270.	2.0	255
8	Building quantitative, threeâ€dimensional atlases of gene expression and morphology at cellular resolution. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 767-779.	5.9	9
9	Volumetric Semantic Segmentation Using Pyramid Context Features. , 2013, 2013, 3448-3455.		10
10	Nonparametric Variable Selection and Modeling for Spatial and Temporal Regulatory Networks. Methods in Cell Biology, 2012, 110, 243-261.	1.1	0
11	DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21330-21335.	7.1	141
12	A model for sequential evolution of ligands by exponential enrichment (SELEX) data. Annals of Applied Statistics, 2012, 6, .	1.1	6
13	Quantitative Models of the Mechanisms that Control Genome-Wide Patterns of Animal Transcription Factor Binding. Methods in Cell Biology, 2012, 110, 263-283.	1.1	6
14	High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of <i>Desulfovibrio vulgaris</i> . Journal of Proteome Research, 2012, 11, 5720-5735.	3.7	22
15	High-Throughput SELEX Determination of DNA Sequences Bound by Transcription Factors In Vitro. Methods in Molecular Biology, 2012, 786, 51-63.	0.9	52
16	A Multichannel Gel Electrophoresis and Continuous Fraction Collection Apparatus for High-Throughput Protein Separation and Characterization. Methods in Molecular Biology, 2012, 869, 373-384.	0.9	1
17	Genome-Wide In Vivo Cross-linking of Sequence-Specific Transcription Factors. Methods in Molecular Biology, 2012, 809, 3-26.	0.9	6

18 Visually Relating Gene Expression and in vivo DNA Binding Data., 2011,,.

Mark D Biggin

#	Article	IF	CITATIONS
19	Automated Iterative MS/MS Acquisition: A Tool for Improving Efficiency of Protein Identification Using a LC–MALDI MS Workflow. Analytical Chemistry, 2011, 83, 6286-6293.	6.5	13
20	Dynamic reprogramming of chromatin accessibility during Drosophila embryo development. Genome Biology, 2011, 12, R43.	9.6	174
21	The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biology, 2011, 12, R34.	9.6	199
22	Animal Transcription Networks as Highly Connected, Quantitative Continua. Developmental Cell, 2011, 21, 611-626.	7.0	275
23	Quantitative Models of the Mechanisms That Control Genome-Wide Patterns of Transcription Factor Binding during Early Drosophila Development. PLoS Genetics, 2011, 7, e1001290.	3.5	150
24	A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila. PLoS Genetics, 2011, 7, e1002346.	3.5	51
25	Nonparametric identification of regulatory interactions from spatial and temporal gene expression data. BMC Bioinformatics, 2010, 11, 413.	2.6	9
26	A multichannel gel electrophoresis and continuous fraction collection apparatus for highâ€ŧhroughput protein separation and characterization. Electrophoresis, 2010, 31, 440-447.	2.4	4
27	Coupling visualization and data analysis for knowledge discovery from multi-dimensional scientific data. Procedia Computer Science, 2010, 1, 1757-1764.	2.0	8
28	Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species. PLoS Biology, 2010, 8, e1000343.	5.6	184
29	MyoD, a Lesson in Widespread DNA Binding. Developmental Cell, 2010, 18, 505-506.	7.0	5
30	Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7, 64-79.	3.0	28
31	Survey of large protein complexes in <i>D. vulgaris</i> reveals great structural diversity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16580-16585.	7.1	29
32	Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biology, 2009, 10, R80.	9.6	313
33	Visual Exploration of Three-Dimensional Gene Expression Using Physical Views and Linked Abstract Views. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009, 6, 296-309.	3.0	30
34	A Quantitative Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm. Cell, 2008, 133, 364-374.	28.9	263
35	A "Tagless―Strategy for Identification of Stable Protein Complexes Genome-wide by Multidimensional Orthogonal Chromatographic Separation and iTRAQ Reagent Tracking. Journal of Proteome Research, 2008, 7, 1836-1849.	3.7	46
36	Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm. PLoS Biology, 2008, 6, e27.	5.6	428

Mark D Biggin

#	Article	IF	CITATIONS
37	Automatic channel unmixing for high-throughput quantitative analysis of fluorescence images. Optics Express, 2007, 15, 12306.	3.4	9
38	Octomeric pyruvate-ferredoxin oxidoreductase from Desulfovibrio vulgaris. Journal of Structural Biology, 2007, 159, 9-18.	2.8	16
39	Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline. Genome Biology, 2006, 7, R123.	9.6	121
40	Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution II: dynamics. Genome Biology, 2006, 7, R124.	9.6	94
41	Large-Scale Turnover of Functional Transcription Factor Binding Sites in Drosophila. PLoS Computational Biology, 2006, 2, e130.	3.2	231
42	Mapping organism expression levels at cellular resolution in developing Drosophila. Microscopy and Microanalysis, 2002, 8, 1044-1045.	0.4	0
43	Zeste maintains repression of <i>Ubx</i> transgenes: support for a new model of Polycomb repression. Development (Cambridge), 2002, 129, 1339-1343.	2.5	52
44	Mapping Organism Expression Levels at Cellular Resolution in Developing Drosophila. Microscopy and Microanalysis, 2001, 7, 10-11.	0.4	1
45	Transcriptional regulation in Drosophila : the post-genome challenge. Functional and Integrative Genomics, 2001, 1, 223-234.	3.5	18
46	To bind or not to bind. Nature Genetics, 2001, 28, 303-304.	21.4	22
47	Accessibility of transcriptionally inactive genes is specifically reduced at homeoprotein-DNA binding sites in Drosophila. Nucleic Acids Research, 2000, 28, 2839-2846.	14.5	13
48	The specificity of protein-DNA crosslinking by formaldehyde: in vitro and in Drosophila embryos. Nucleic Acids Research, 2000, 28, 4e-4.	14.5	62
49	An In Vivo UV Crosslinking Assay That Detects DNA Binding by Sequence-Specific Transcription Factors. , 1999, 119, 497-508.		6
50	Ultraviolet cross-linking assay to measure sequence-specific DNA binding in vivo. Methods in Enzymology, 1999, 304, 496-515.	1.0	8
51	Measurement ofin VivoDNA Binding by Sequence-Specific Transcription Factors Using UV Cross-Linking. Methods, 1997, 11, 215-224.	3.8	20
52	Transcription factors and the control of Drosophila development. Trends in Genetics, 1989, 5, 377-383.	6.7	95
53	A purified Drosophila homeodomain protein represses transcription in vitro. Cell, 1989, 58, 433-440.	28.9	157
54	Zeste encodes a sequence-specific transcription factor that activates the Ultrabithorax promoter in vitro. Cell 1988 53, 713-722	28.9	152

#	Article	IF	CITATIONS
55	Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell, 1988, 53, 699-711.	28.9	477