## **Raul Urrutia**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10519331/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Sp1- and Krüppel-like transcription factors. Genome Biology, 2003, 4, 206.                                                                                                                                                                                     | 9.6  | 820       |
| 2  | Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell<br>function. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102,<br>4807-4812.                                    | 7.1  | 231       |
| 3  | The Heterochromatin Protein 1 family. Genome Biology, 2006, 7, 228.                                                                                                                                                                                            | 9.6  | 222       |
| 4  | Sin3: Master scaffold and transcriptional corepressor. Biochimica Et Biophysica Acta - Gene<br>Regulatory Mechanisms, 2009, 1789, 443-450.                                                                                                                     | 1.9  | 205       |
| 5  | Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell, 2005, 7, 39-49.                                                                                                                                         | 16.8 | 202       |
| 6  | The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochemical Journal, 2005, 392, 1-11.                                                                                                                                                               | 3.7  | 188       |
| 7  | Molecular Cloning and Characterization of TIEG2Reveals a New Subfamily of Transforming Growth<br>Factor-β-inducible Sp1-like Zinc Finger-encoding Genes Involved in the Regulation of Cell Growth.<br>Journal of Biological Chemistry, 1998, 273, 25929-25936. | 3.4  | 178       |
| 8  | Zymophagy, a Novel Selective Autophagy Pathway Mediated by VMP1-USP9x-p62, Prevents Pancreatic Cell<br>Death*. Journal of Biological Chemistry, 2011, 286, 8308-8324.                                                                                          | 3.4  | 174       |
| 9  | A Conserved α-Helical Motif Mediates the Interaction of Sp1-Like Transcriptional Repressors with the Corepressor mSin3A. Molecular and Cellular Biology, 2001, 21, 5041-5049.                                                                                  | 2.3  | 173       |
| 10 | Evidence for the existence of an HP1-mediated subcode within the histone code. Nature Cell Biology, 2006, 8, 407-415.                                                                                                                                          | 10.3 | 173       |
| 11 | The transforming growth factor ?1-inducible transcription factor, TIEG1, mediates apoptosis through oxidative stress. Hepatology, 1999, 30, 1490-1497.                                                                                                         | 7.3  | 152       |
| 12 | Basics of TGF-ß and Pancreatic Cancer. Pancreatology, 2007, 7, 423-435.                                                                                                                                                                                        | 1.1  | 141       |
| 13 | Sp1 and Its Likes: Biochemical and Functional Predictions for a Growing Family of Zinc Finger<br>Transcription Factors. Annals of the New York Academy of Sciences, 1999, 880, 94-102.                                                                         | 3.8  | 126       |
| 14 | Browning of human adipocytes requires KLF11 and reprogramming of PPARÎ <sup>3</sup> superenhancers. Genes and Development, 2015, 29, 7-22.                                                                                                                     | 5.9  | 124       |
| 15 | Three Conserved Transcriptional Repressor Domains Are a Defining Feature of the TIEG Subfamily of Sp1-like Zinc Finger Proteins. Journal of Biological Chemistry, 1999, 274, 29500-29504.                                                                      | 3.4  | 111       |
| 16 | An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO Journal, 2003, 22, 4748-4758.                                                                                                                | 7.8  | 95        |
| 17 | MODY7 Gene, KLF11, Is a Novel p300-dependent Regulator of Pdx-1 (MODY4) Transcription in Pancreatic<br>Islet β Cells. Journal of Biological Chemistry, 2009, 284, 36482-36490.                                                                                 | 3.4  | 94        |
| 18 | A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of <i>KRAS</i> -mediated cell growth. Biochemical Journal, 2011, 435, 529-537.                                                                                        | 3.7  | 85        |

RAUL URRUTIA

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | KLF11 mediates PPARÎ <sup>3</sup> cerebrovascular protection in ischaemic stroke. Brain, 2013, 136, 1274-1287.                                                                                                                                                              | 7.6 | 78        |
| 20 | KLF11 mediates a critical mechanism in TGF-β signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Gastroenterology, 2004, 127, 607-620.                                                                                                                    | 1.3 | 77        |
| 21 | TIEG proteins join the Smads as TGF-β-regulated transcription factors that control pancreatic cell growth. American Journal of Physiology - Renal Physiology, 2000, 278, G513-G521.                                                                                         | 3.4 | 74        |
| 22 | The Sp1-like Protein BTEB3 Inhibits Transcription via the Basic Transcription Element Box by Interacting with mSin3A and HDAC-1 Co-repressors and Competing with Sp1. Journal of Biological Chemistry, 2001, 276, 36749-36756.                                              | 3.4 | 74        |
| 23 | Disruption of a Novel Krüppel-like Transcription Factor p300-regulated Pathway for Insulin<br>Biosynthesis Revealed by Studies of the c331 INS Mutation Found in Neonatal Diabetes Mellitus.<br>Journal of Biological Chemistry, 2011, 286, 28414-28424.                    | 3.4 | 72        |
| 24 | Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis. Cancer Letters, 2013, 328, 212-221.                                                                                                                                                          | 7.2 | 72        |
| 25 | Sequence-Specific Transcriptional Repression by KS1, a Multiple-Zinc-Finger–KruÌ^ppel-Associated Box<br>Protein. Molecular and Cellular Biology, 2001, 21, 928-939.                                                                                                         | 2.3 | 67        |
| 26 | Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling. Journal of Biological Chemistry, 2009, 284, 6291-6300.                                            | 3.4 | 67        |
| 27 | Homotypic cell cannibalism, a cellâ€death process regulated by the nuclear protein 1, opposes to<br>metastasis in pancreatic cancer. EMBO Molecular Medicine, 2012, 4, 964-979.                                                                                             | 6.9 | 67        |
| 28 | KLF11-mediated Repression Antagonizes Sp1/Sterol-responsive Element-binding protein-induced<br>Transcriptional Activation of Caveolin-1 in Response to Cholesterol Signaling. Journal of Biological<br>Chemistry, 2005, 280, 1901-1910.                                     | 3.4 | 58        |
| 29 | Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter. Biochemical Journal, 2002, 366, 873-882. | 3.7 | 50        |
| 30 | Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor. EMBO Journal, 2002, 21, 2451-2460.                                                                                                                              | 7.8 | 49        |
| 31 | Sequence-specific Recruitment of Heterochromatin Protein 1 via Interaction with Krüppel-like Factor<br>11, a Human Transcription Factor Involved in Tumor Suppression and Metabolic Diseases. Journal of<br>Biological Chemistry, 2012, 287, 13026-13039.                   | 3.4 | 47        |
| 32 | Pancreatic Stellate Cell Models for Transcriptional Studies of Desmoplasia-Associated Genes.<br>Pancreatology, 2010, 10, 505-516.                                                                                                                                           | 1.1 | 41        |
| 33 | Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and<br>Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis?. Molecular Cancer Research,<br>2015, 13, 604-612.                                                      | 3.4 | 41        |
| 34 | Distinct Role of Kruppel-like Factor 11 in the Regulation of Prostaglandin E2 Biosynthesis. Journal of<br>Biological Chemistry, 2010, 285, 11433-11444.                                                                                                                     | 3.4 | 37        |
| 35 | Detailed Structural-Functional Analysis of the Krüppel-like Factor 16 (KLF16) Transcription Factor<br>Reveals Novel Mechanisms for Silencing Sp/KLF Sites Involved in Metabolism and Endocrinology.<br>Journal of Biological Chemistry, 2012, 287, 7010-7025.               | 3.4 | 37        |
| 36 | Krüppel-like Factor 11 Differentially Couples to Histone Acetyltransferase and Histone<br>Methyltransferase Chromatin Remodeling Pathways to Transcriptionally Regulate Dopamine D2<br>Receptor in Neuronal Cells. Journal of Biological Chemistry, 2012, 287, 12723-12735. | 3.4 | 36        |

RAUL URRUTIA

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Epigenetics: A Promising Paradigm for Better Understanding and Managing Pain. Journal of Pain, 2013, 14, 549-557.                                                                                                                                            | 1.4 | 36        |
| 38 | Krüppel-Like Factor-11, a Transcription Factor Involved in Diabetes Mellitus, Suppresses Endothelial<br>Cell Activation via the Nuclear Factor-κB Signaling Pathway. Arteriosclerosis, Thrombosis, and<br>Vascular Biology, 2012, 32, 2981-2988.             | 2.4 | 35        |
| 39 | Evidence Revealing Deregulation of The KLF11-Mao A Pathway in Association with Chronic Stress and Depressive Disorders. Neuropsychopharmacology, 2015, 40, 1373-1382.                                                                                        | 5.4 | 35        |
| 40 | A Novel Role of the Sp/KLF Transcription Factor KLF11 in Arresting Progression of Endometriosis. PLoS ONE, 2013, 8, e60165.                                                                                                                                  | 2.5 | 34        |
| 41 | Krüppel-like Factor 11 Regulates the Expression of Metabolic Genes via an Evolutionarily Conserved<br>Protein Interaction Domain Functionally Disrupted in Maturity Onset Diabetes of the Young. Journal<br>of Biological Chemistry, 2013, 288, 17745-17758. | 3.4 | 31        |
| 42 | A Novel Functional Interaction between the Sp1-like Protein KLF13 and SREBP-Sp1 Activation Complex<br>Underlies Regulation of Low Density Lipoprotein Receptor Promoter Function. Journal of Biological<br>Chemistry, 2006, 281, 3040-3047.                  | 3.4 | 27        |
| 43 | The sunset of somatic genetics and the dawn of epigenetics: a new frontier in pancreatic cancer research. Current Opinion in Gastroenterology, 2008, 24, 597-602.                                                                                            | 2.3 | 20        |
| 44 | The Triple-Code Model for Pancreatic Cancer. Surgical Clinics of North America, 2015, 95, 935-952.                                                                                                                                                           | 1.5 | 20        |
| 45 | Differential binding of Sin3 interacting repressor domains to the PAH2 domain of Sin3A. FEBS Letters, 2003, 548, 108-112.                                                                                                                                    | 2.8 | 19        |
| 46 | Functional impact of Aurora A-mediated phosphorylation of HP1Î <sup>3</sup> at serine 83 during cell cycle progression. Epigenetics and Chromatin, 2013, 6, 21.                                                                                              | 3.9 | 19        |
| 47 | Polycomb and the Emerging Epigenetics of Pancreatic Cancer. Journal of Gastrointestinal Cancer, 2011, 42, 100-111.                                                                                                                                           | 1.3 | 17        |
| 48 | Evidence supporting a critical contribution of intrinsically disordered regions to the biochemical behavior of full-length human HP1Î <sup>3</sup> . Journal of Molecular Modeling, 2016, 22, 12.                                                            | 1.8 | 16        |
| 49 | TGFβ-mediated signaling and transcriptional regulation in pancreatic development and cancer. Current<br>Opinion in Gastroenterology, 2001, 17, 434-440.                                                                                                      | 2.3 | 13        |
| 50 | Key role of Krüppel-like factor proteins in pancreatic cancer and other gastrointestinal neoplasias.<br>Current Opinion in Gastroenterology, 2006, 22, 505-511.                                                                                              | 2.3 | 13        |
| 51 | Growth inhibitory signalling by TGFβ is blocked in Ras-transformed intestinal epithelial cells at a post-receptor locus. Cellular Signalling, 2003, 15, 699-708.                                                                                             | 3.6 | 11        |
| 52 | Novel role of VMP1 as modifier of the pancreatic tumor cell response to chemotherapeutic drugs.<br>Journal of Cellular Physiology, 2013, 228, 1834-1843.                                                                                                     | 4.1 | 10        |
| 53 | Phenotypic Characterization of Mice Carrying Homozygous Deletion of KLF11, a Gene in Which<br>Mutations Cause Human Neonatal and MODY VII Diabetes. Endocrinology, 2015, 156, 3581-3595.                                                                     | 2.8 | 9         |
| 54 | Pancreatic cancer research: challenges, opportunities, and recent developments. Current Opinion in<br>Gastroenterology, 2002, 18, 563-567.                                                                                                                   | 2.3 | 6         |

RAUL URRUTIA

| #  | Article                                                                                                                                                                                                                     | IF    | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 55 | Fundamentals of Transcription Factors and their Impact on Pancreatic Development and Cancer.<br>Pancreatology, 2003, 3, 276-283.                                                                                            | 1.1   | 6         |
| 56 | Single and combinatorial chromatin coupling events underlies the function of transcript factor kr¼ppel-like factor 11 in the regulation of gene networks. BMC Molecular Biology, 2014, 15, 10.                              | 3.0   | 6         |
| 57 | The Aurora A-HP1Î <sup>3</sup> pathway regulates gene expression and mitosis in cells from the sperm lineage. BMC Developmental Biology, 2015, 15, 23.                                                                      | 2.1   | 6         |
| 58 | Modeling postâ€translational modifications and cancerâ€associated mutations that impact the<br>heterochromatin protein 1αâ€importin α heterodimers. Proteins: Structure, Function and Bioinformatics,<br>2019, 87, 904-916. | 2.6   | 5         |
| 59 | Conservation of the TGFβ/Labial Homeobox Signaling Loop in Endoderm-Derived Cells between<br>Drosophila and Mammals. Pancreatology, 2010, 10, 74-84.                                                                        | 1.1   | 4         |
| 60 | Diabetes-Causing Gene, Kruppel-Like Factor 11, Modulates the Antinociceptive Response of Chronic<br>Ethanol Intake. Alcoholism: Clinical and Experimental Research, 2014, 38, 401-408.                                      | 2.4   | 4         |
| 61 | Mechanisms Underlying the Regulation of HP1Î <sup>3</sup> by the NGF-PKA Signaling Pathway. Scientific Reports, 2018, 8, 15077.                                                                                             | 3.3   | 4         |
| 62 | Discovery, expression, cellular localization, and molecular properties of a novel, alternative spliced HP1Î <sup>3</sup> isoform, lacking the chromoshadow domain. PLoS ONE, 2020, 15, e0217452.                            | 2.5   | 4         |
| 63 | Critical Role of the HP1-Histone Methyltransferase Pathways in Cancer Epigenetics. Medical Epigenetics, 2013, 1, 100-105.                                                                                                   | 262.3 | 3         |
| 64 | EGFR (ErbB) Signaling Pathways in Pancreatic Cancer Pathogenesis. , 2018, , 383-408.                                                                                                                                        |       | 1         |
| 65 | EGFR (ErbB) Signaling Pathways in Pancreatic Cancer Pathogenesis. , 2017, , 1-26.                                                                                                                                           |       | 1         |
| 66 | Notch Signaling in Pancreatic Morphogenesis and Pancreatic Cancer Pathogenesis. , 2017, , 1-23.                                                                                                                             |       | 0         |
| 67 | Epigenetics and Its Applications to the Progression Model of Pancreatic Cancer. , 2018, , 177-208.                                                                                                                          |       | 0         |
| 68 | Notch Signaling in Pancreatic Morphogenesis and Pancreatic Cancer Pathogenesis. , 2018, , 457-479.                                                                                                                          |       | 0         |
| 69 | EGFR Signaling Pathways in Pancreatic Cancer Pathogenesis. , 2010, , 387-402.                                                                                                                                               |       | 0         |
| 70 | Epigenetics and its Applications to a Revised Progression Model of Pancreatic Cancer. , 2010, , 143-169.                                                                                                                    |       | 0         |
| 71 | Notch Signaling in Pancreatic Morphogenesis and Pancreatic Cancer Pathogenesis. , 2010, , 441-455.                                                                                                                          |       | 0         |
| 72 | Epigenetics and Its Applications to the Progression Model of Pancreatic Cancer. , 2017, , 1-32.                                                                                                                             |       | 0         |