
Richard B Alley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10517366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews, 2000, 19, 213-226.	3.0	752
2	The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews, 2005, 24, 1123-1149.	3.0	727
3	Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 1998, 391, 141-146.	27.8	639
4	Ice-Sheet and Sea-Level Changes. Science, 2005, 310, 456-460.	12.6	463
5	The role of seasonality in abrupt climate change. Quaternary Science Reviews, 2005, 24, 1159-1182.	3.0	463
6	Northern Hemisphere Ice-Sheet Influences on Global Climate Change. Science, 1999, 286, 1104-1111.	12.6	432
7	Paleoclimatic Evidence for Future Ice-Sheet Instability and Rapid Sea-Level Rise. Science, 2006, 311, 1747-1750.	12.6	400
8	Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth and Planetary Science Letters, 2015, 412, 112-121.	4.4	362
9	History of sea ice in the Arctic. Quaternary Science Reviews, 2010, 29, 1757-1778.	3.0	343
10	The polar regions in a 2°C warmer world. Science Advances, 2019, 5, eaaw9883.	10.3	289
11	THE DECLACIATION OF THE NORTHERN HEMISPHERE: A Global Perspective. Annual Review of Earth and Planetary Sciences, 1999, 27, 149-182.	11.0	275
12	Flow-law hypotheses for ice-sheet modeling. Journal of Glaciology, 1992, 38, 245-256.	2.2	268
13	Stability of the West Antarctic ice sheet in a warming world. Nature Geoscience, 2011, 4, 506-513.	12.9	261
14	Tidally Controlled Stick-Slip Discharge of a West Antarctic Ice. Science, 2003, 301, 1087-1089.	12.6	260
15	Deforming-bed origin for southern Laurentide till sheets?. Journal of Glaciology, 1991, 37, 67-76.	2.2	242
16	Arctic amplification: can the past constrain the future?. Quaternary Science Reviews, 2010, 29, 1779-1790.	3.0	233
17	The Paris Climate Agreement and future sea-level rise from Antarctica. Nature, 2021, 593, 83-89.	27.8	219
18	Putting the Younger Dryas cold event into context. Quaternary Science Reviews, 2010, 29, 1078-1081.	3.0	218

#	Article	IF	CITATIONS
19	Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: I. Field evidence. Journal of Glaciology, 1998, 44, 547-562.	2.2	207
20	In search of ice-stream sticky spots. Journal of Glaciology, 1993, 39, 447-454.	2.2	206
21	Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical Research, 2008, 113, .	3.3	202
22	Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quaternary Science Reviews, 2004, 23, 1013-1027.	3.0	197
23	Ice-Sheet Response to Oceanic Forcing. Science, 2012, 338, 1172-1176.	12.6	197
24	History of the Greenland Ice Sheet: paleoclimatic insights. Quaternary Science Reviews, 2010, 29, 1728-1756.	3.0	177
25	Effect of Sedimentation on Ice-Sheet Grounding-Line Stability. Science, 2007, 315, 1838-1841.	12.6	176
26	Impact of climate change on New York City's coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11861-11866.	7.1	169
27	Relative Performance of Self-Organizing Maps and Principal Component Analysis in Pattern Extraction from Synthetic Climatological Data. Polar Geography, 2005, 29, 188-212.	1.9	167
28	Discovery of Till Deposition at the Grounding Line of Whillans Ice Stream. Science, 2007, 315, 1835-1838.	12.6	164
29	Stagnation of Ice Stream C, West Antarctica by water piracy. Geophysical Research Letters, 1997, 24, 265-268.	4.0	162
30	Basal Zone of the West Antarctic Ice Streams and its Role in Lubrication of Their Rapid Motion. Antarctic Research Series, 0, , 157-199.	0.2	159
31	Deforming-bed origin for southern Laurentide till sheets?. Journal of Glaciology, 1991, 37, 67-76.	2.2	151
32	Ice Core Records of Atmospheric N2O Covering the Last 106,000 Years. Science, 2003, 301, 945-948.	12.6	150
33	lceâ€front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. Journal of Geophysical Research, 2008, 113, .	3.3	147
34	Origin of the first global meltwater pulse following the Last Glacial Maximum. Paleoceanography, 1996, 11, 563-577.	3.0	141
35	Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and modelâ€based analysis. Journal of Geophysical Research, 2012, 117, .	3.3	134
36	Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quaternary Science Reviews, 2005, 24, 1333-1343.	3.0	130

#	Article	IF	CITATIONS
37	Geological record of ice shelf break-up and grounding line retreat, Pine Island Bay, West Antarctica. Geology, 2011, 39, 691-694.	4.4	125
38	Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Annals of Glaciology, 2005, 40, 8-14.	1.4	120
39	Wally Was Right: Predictive Ability of the North Atlantic "Conveyor Belt―Hypothesis for Abrupt Climate Change. Annual Review of Earth and Planetary Sciences, 2007, 35, 241-272.	11.0	120
40	Calibration of the δ180 isotopic paleothermometer for central Greenland, using borehole temperatures. Journal of Glaciology, 1994, 40, 341-349.	2.2	117
41	A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: implications for seasonality during lateglacial time. Quaternary Science Reviews, 2008, 27, 2273-2282.	3.0	112
42	Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory. Journal of Glaciology, 1998, 44, 563-569.	2.2	111
43	Concerning the Deposition and Diagenesis of Strata in Polar Firn. Journal of Glaciology, 1988, 34, 283-290.	2.2	110
44	Basal mechanics of ice streams: Insights from the stickâ€slip motion of Whillans Ice Stream, West Antarctica. Journal of Geophysical Research, 2009, 114, .	3.3	110
45	Ice-Core Analysis on the Siple Coast of West Antarctica. Annals of Glaciology, 1988, 11, 1-7.	1.4	109
46	Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14249-14254.	7.1	105
47	The Younger Dryas Termination and North Atlantic Deep Water Formation: Insights from climate model simulations and Greenland Ice Cores. Paleoceanography, 1997, 12, 23-38.	3.0	101
48	A northern lead in the orbital band: north–south phasing of Ice-Age events. Quaternary Science Reviews, 2002, 21, 431-441.	3.0	97
49	Greenland was nearly ice-free for extended periods during the Pleistocene. Nature, 2016, 540, 252-255.	27.8	95
50	Laboratory study of the frictional rheology of sheared till. Journal of Geophysical Research, 2008, 113, .	3.3	94
51	Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms. Quaternary Research, 2012, 77, 293-304.	1.7	91
52	Dating the Siple Dome (Antarctica) ice core by manual and computer interpretation of annual layering. Journal of Glaciology, 2004, 50, 453-461.	2.2	90
53	A Simple Law for Ice-Shelf Calving. Science, 2008, 322, 1344-1344.	12.6	88
54	Rapid response of modern day ice sheets to external forcing. Earth and Planetary Science Letters, 2007, 257, 1-13.	4.4	86

#	Article	IF	CITATIONS
55	Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More. Annual Review of Earth and Planetary Sciences, 2015, 43, 207-231.	11.0	83
56	Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream, Antarctica. Journal of Glaciology, 2014, 60, 795-807.	2.2	81
57	Response of the East Antarctica ice sheet to seaâ€level rise. Journal of Geophysical Research, 1984, 89, 6487-6493.	3.3	79
58	Ice-shelf tidal flexure and subglacial pressure variations. Earth and Planetary Science Letters, 2013, 361, 422-428.	4.4	79
59	Sedimentary processes may cause fluctuations of tidewater glaciers. Annals of Glaciology, 1991, 15, 119-124.	1.4	78
60	Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology, 2003, 31, 231.	4.4	78
61	Phase relationships between Antarctic and Greenland climate records. Annals of Glaciology, 2002, 35, 451-456.	1.4	73
62	Dilatant till facilitates ice-stream flow in northeast Greenland. Earth and Planetary Science Letters, 2014, 401, 57-69.	4.4	73
63	Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory. Journal of Glaciology, 1998, 44, 563-569.	2.2	72
64	Nucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica. Geophysical Research Letters, 2013, 40, 312-315.	4.0	71
65	Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters, 2016, 43, 10,817.	4.0	69
66	Variations in melt-layer frequency in the GISP2 ice core: implications for Holocene summer temperatures in central Greenland. Annals of Glaciology, 1995, 21, 64-70.	1.4	68
67	Subglacial Lake Whillans — Ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth and Planetary Science Letters, 2012, 331-332, 237-245.	4.4	66
68	Motion of an Antarctic glacier by repeated tidally modulated earthquakes. Nature Geoscience, 2012, 5, 623-626.	12.9	66
69	The Robustness of Midlatitude Weather Pattern Changes due to Arctic Sea Ice Loss. Journal of Climate, 2016, 29, 7831-7849.	3.2	65
70	ls erosion by deforming subglacial sediments significant? (Toward till continuity). Annals of Glaciology, 1996, 22, 17-24.	1.4	64
71	Subglacial sediments as a control on the onset and location of two Siple Coast ice streams, West Antarctica. Journal of Geophysical Research, 2006, 111, .	3.3	64
72	Geologic Controls on the Initiation of Rapid Basal Motion for West Antarctic Ice Streams: A Geophysical Perspective Including New Airborne Radar Sounding and Laser Altimetry Results. Antarctic Research Series, 0, , 105-121.	0.2	63

#	Article	IF	CITATIONS
73	Microstructures of sediment flow deposits and subglacial sediments: a comparison. Boreas, 2001, 30, 254-262.	2.4	61
74	Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 2021, 372, 1097-1101.	12.6	61
75	Seismic observations of transient subglacial waterâ€flow beneath MacAyeal Ice Stream, West Antarctica. Geophysical Research Letters, 2009, 36, .	4.0	60
76	Dynamics of stick–slip motion, Whillans Ice Stream, Antarctica. Earth and Planetary Science Letters, 2011, 305, 283-289.	4.4	60
77	How high will the seas rise?. Science, 2016, 354, 1375-1377.	12.6	59
78	Polar Firn Densification and Grain Growth. Annals of Glaciology, 1982, 3, 7-11.	1.4	58
79	Variations in melt-layer frequency in the GISP2 ice core: implications for Holocene summer temperatures in central Greenland. Annals of Glaciology, 1995, 21, 64-70.	1.4	58
80	Extensive storage of basal meltwater in the onset region of a major West Antarctic ice stream. Geology, 2007, 35, 251.	4.4	57
81	Seismic and geodetic evidence for groundingâ€line control of Whillans Ice Stream stickâ€slip events. Journal of Geophysical Research F: Earth Surface, 2014, 119, 333-348.	2.8	55
82	Subglacial Lake Whillans — Seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth and Planetary Science Letters, 2012, 331-332, 201-209.	4.4	54
83	Glacial advance and stagnation caused by rock avalanches. Earth and Planetary Science Letters, 2010, 294, 123-130.	4.4	53
84	Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures. One Earth, 2020, 3, 691-703.	6.8	52
85	Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from iceâ€penetrating radar. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1954-1983.	2.8	50
86	Ice-sheet mass balance: assessment, attribution and prognosis. Annals of Glaciology, 2007, 46, 1-7.	1.4	49
87	Recent Warming in Central Greenland?. Annals of Glaciology, 1990, 14, 6-8.	1.4	48
88	Englacial seismic reflectivity: imaging crystal-orientation fabric in West Antarctica. Journal of Glaciology, 2011, 57, 639-650.	2.2	42
89	Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat. Nature Communications, 2016, 7, 12957.	12.8	42
90	TOWARDS A HYDROLOGICAL MODEL FOR COMPUTERIZED ICE-SHEET SIMULATIONS. Hydrological Processes, 1996, 10, 649-660.	2.6	41

#	Article	IF	CITATIONS
91	Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica. Annals of Glaciology, 2003, 36, 251-256.	1.4	41
92	Physical properties of the WAIS Divide ice core. Journal of Glaciology, 2014, 60, 1181-1198.	2.2	41
93	Ice sheet grounding zone stabilization due to till compaction. Geophysical Research Letters, 2013, 40, 5406-5411.	4.0	40
94	Basal conditions and ice dynamics inferred from radar-derived internal stratigraphy of the northeast Greenland ice stream. Annals of Glaciology, 2014, 55, 127-137.	1.4	40
95	Relating bed character and subglacial morphology using seismic data from Thwaites Glacier, West Antarctica. Earth and Planetary Science Letters, 2019, 507, 199-206.	4.4	40
96	Basal-crevasse-fill origin of laminated debris bands at Matanuska Glacier, Alaska, U.S.A Journal of Glaciology, 2001, 47, 412-422.	2.2	39
97	Modeling Ice-Sheet Flow. Science, 2012, 336, 551-552.	12.6	39
98	Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2558-2574.	3.3	39
99	Unique and exceptionally long interglacial marine isotope stage 11: Window into Earth warm future climate. Geophysical Monograph Series, 2003, , 1-14.	0.1	38
100	The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting. Climate of the Past, 2019, 15, 1793-1808.	3.4	38
101	Spatial and temporal characterization of Hoar Formation in central Greenland using SSM/I brightness temperatures. Geophysical Research Letters, 1993, 20, 2643-2646.	4.0	37
102	Understanding Glacier Flow in Changing Times. Science, 2008, 322, 1061-1062.	12.6	37
103	Dynamic perennial firn aquifer on an Arctic glacier. Geophysical Research Letters, 2015, 42, 1418-1426.	4.0	37
104	Troughs developed in ice-stream shear margins precondition ice shelves for ocean-driven breakup. Science Advances, 2019, 5, eaax2215.	10.3	37
105	Fracture toughness of ice and firn determined from the modified ring test. Journal of Glaciology, 1995, 41, 383-394.	2.2	36
106	Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion. Annals of Glaciology, 1996, 22, 126-133.	1.4	36
107	Towards ice-core-based synoptic reconstructions of west antarctic climate with artificial neural networks. International Journal of Climatology, 2005, 25, 581-610.	3.5	36
108	Basal characteristics of the main sticky spot on the ice plain of Whillans Ice Stream, Antarctica. Earth and Planetary Science Letters, 2016, 440, 12-19.	4.4	35

#	Article	IF	CITATIONS
109	Ice-Core Analysis on the Siple Coast of West Antarctica. Annals of Glaciology, 1988, 11, 1-7.	1.4	34
110	Potential for stratigraphie folding near ice-sheet centers. Journal of Claciology, 2001, 47, 639-648.	2.2	33
111	Sediment deposition at the modern grounding zone of Whillans Ice Stream, West Antarctica. Geophysical Research Letters, 2013, 40, 3934-3939.	4.0	33
112	Ice thickness and isostatic imbalances in the Ross Embayment, West Antarctica: model results. Global and Planetary Change, 2004, 42, 265-278.	3.5	32
113	Characterization and formation of melt layers in polar snow: observations and experiments from West Antarctica. Journal of Glaciology, 2005, 51, 307-312.	2.2	32
114	Glaciohydraulic supercooling in former ice sheets?. Geomorphology, 2006, 75, 20-32.	2.6	31
115	Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: New results. Earth and Planetary Science Letters, 2016, 433, 63-75.	4.4	31
116	Sub-catchment melt and long-term stability of ice stream D, West Antarctica. Geophysical Research Letters, 2002, 29, 55-1-55-4.	4.0	30
117	Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica. Journal of Geophysical Research, 2008, 113, .	3.3	30
118	Comment on "Absence of Cooling in New Zealand and the Adjacent Ocean During the Younger Dryas Chronozone". Science, 2008, 320, 746-746.	12.6	30
119	Ice-cliff failure via retrogressive slumping. Geology, 2019, 47, 449-452.	4.4	30
120	Characterization of a hoar-development episode using SSM/I brightness temperatures in the vicinity of the GISP2 site, Greenland. Annals of Glaciology, 1993, 17, 183-188.	1.4	29
121	Exploring till bed kinematics using AMS magnetic fabrics and pebble fabrics: the Weedsport drumlin field, New York State, USA. Boreas, 2012, 41, 31-41.	2.4	29
122	Interannual Arctic sea ice variability and associated winter weather patterns: A regional perspective for 1979–2014. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,433.	3.3	29
123	Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion. Annals of Glaciology, 1996, 22, 126-133.	1.4	28
124	Palaeoclimatic insights into future climate challenges. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 1831-1849.	3.4	28
125	Polar Firn Densification and Grain Growth. Annals of Glaciology, 1982, 3, 7-11.	1.4	28
126	Comment on "Catastrophic ice shelf breakup as the source of Heinrich event icebergs―by C. L. Hulbe et al Paleoceanography, 2005, 20, n/a-n/a.	3.0	27

21

#	ARTICLE	IF	CITATIONS
127	Automatic Weather Stations and Artificial Neural Networks: Improving the Instrumental Record in West Antarctica. Monthly Weather Review, 2002, 130, 3037-3053.	1.4	26
128	Sediment, glaciohydraulic supercooling, and fast glacier flow. Annals of Glaciology, 2003, 36, 135-141.	1.4	26
129	West Antarctic Ice Sheet Elevation Changes. Antarctic Research Series, 0, , 75-90.	0.2	26
130	Is erosion by deforming subglacial sediments significant? (Toward till continuity). Annals of Glaciology, 1996, 22, 17-24.	1.4	26
131	A viscoelastic flowline model applied to tidal forcing of Bindschadler Ice Stream, West Antarctica. Earth and Planetary Science Letters, 2012, 319-320, 128-132.	4.4	25
132	Comment on "Greenland-Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores―by C. Wunsch. Quaternary Science Reviews, 2004, 23, 2053-2054.	3.0	24
133	Decoding ice sheet behavior using englacial layer slopes. Geophysical Research Letters, 2017, 44, 5561-5570.	4.0	24
134	Multiple Steady States in Ice-Water-Till Systems. Annals of Glaciology, 1990, 14, 1-5.	1.4	23
135	Annual layers in polar firn detected by Borehole Optical Stratigraphy. Geophysical Research Letters, 2003, 30, .	4.0	23
136	Past rates of climate change in the Arctic. Quaternary Science Reviews, 2010, 29, 1716-1727.	3.0	23
137	Grounding-Line Systems: Processes, Glaciological Inferences and the Stratigraphic Record. Antarctic Research Series, 2013, , 169-187.	0.2	23
138	Onset of Streaming Flow in the Siple Coast Region, West Antarctica. Antarctic Research Series, 0, , 123-136.	0.2	23
139	Ice streams—fast, and faster?. Comptes Rendus Physique, 2004, 5, 723-734.	0.9	22
140	Initial effects of oceanic warming on a coupled ocean–ice shelf–ice stream system. Earth and Planetary Science Letters, 2009, 287, 483-487.	4.4	22
141	Subglacial bathymetry and sediment layer distribution beneath the Pine Island Glacier ice shelf, West Antarctica, modeled using aerogravity and autonomous underwater vehicle data. Annals of Glaciology, 2013, 54, 27-32.	1.4	22
142	The Flow Regime of Ice Stream C and Hypotheses Concerning Its Recent Stagnation. Antarctic Research Series, 0, , 283-296.	0.2	22
143	Concerning the Deposition and Diagenesis of Strata in Polar Firn. Journal of Glaciology, 1988, 34, 283-290.	2.2	22

Microstructures of glacigenic sediment-flow deposits, Matanuska Glacier, Alaska. , 1999, , .

#	Article	IF	CITATIONS
145	Increasing temperature forcing reduces the Greenland Ice Sheet's response time scale. Climate Dynamics, 2015, 45, 2001-2011.	3.8	20
146	The impact of spatially-variable basal properties on outlet glacier flow. Earth and Planetary Science Letters, 2019, 515, 200-208.	4.4	20
147	Toward using borehole temperatures to calibrate an isotopic paleothermometer in central Greenland. Global and Planetary Change, 1992, 6, 265-268.	3.5	19
148	A 15-year West Antarctic climatology from six automatic weather station temperature and pressure records. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	19
149	Three-Dimensional Coordination Number from Two-Dimensional Measurements: A New Method. Journal of Glaciology, 1986, 32, 391-396.	2.2	18
150	Toward using borehole temperatures to calibrate an isotopic paleothermometer in central Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 98, 265-268.	2.3	18
151	Conditions for bubble elongation in cold ice-sheet ice. Journal of Glaciology, 1999, 45, 147-153.	2.2	18
152	Glaciological and geological implications of basal-ice accretion in overdeepenings. , 1999, , .		17
153	Modeling dependence of moraine deposition on climate history: the effect of seasonality. Quaternary Science Reviews, 2009, 28, 639-646.	3.0	17
154	On the nature of the dirty ice at the bottom of the GISP2 ice core. Earth and Planetary Science Letters, 2010, 299, 466-473.	4.4	17
155	Ice Streams B and C. Antarctic Research Series, 0, , 257-281.	0.2	17
156	Calibration of the δ ¹⁸ O isotopic paleothermometer for central Greenland, using borehole temperatures. Journal of Glaciology, 1994, 40, 341-349.	2.2	17
157	Holocene dynamics of the Rhone Glacier, Switzerland, deduced from ice flow models and cosmogenic nuclides. Earth and Planetary Science Letters, 2012, 351-352, 27-35.	4.4	16
158	Recent Warming in Central Greenland?. Annals of Glaciology, 1990, 14, 6-8.	1.4	16
159	Field evidence for the recognition of glaciohydrologic supercooling. , 1999, , .		15
160	Preliminary study of laminated, silt-rich debris bands: Matanuska Glacier, Alaska, U.S.A Annals of Glaciology, 1999, 28, 261-266.	1.4	15
161	Dating annual layers of a shallow Antarctic ice core with an optical scanner. Journal of Glaciology, 2008, 54, 831-838.	2.2	15
162	Differentiating bubble-free layers from melt layers in ice cores using noble gases. Journal of Glaciology, 2015, 61, 585-594.	2.2	15

#	Article	IF	CITATIONS
163	Lithospheric Structure of Greenland From Ambient Noise and Earthquake Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 2018, 123, 7850-7876.	3.4	15
164	Two-dimensional electrical stratigraphy of the Siple Dome (Antarctica) ice core. Journal of Glaciology, 2004, 50, 231-235.	2.2	14
165	The West Antarctic Ice Sheet and Sea-Level Change. Antarctic Research Series, 0, , 1-11.	0.2	14
166	Bathymetry and geological structures beneath the Ross Ice Shelf at the mouth of Whillans Ice Stream, West Antarctica, modeled from groundâ€based gravity measurements. Journal of Geophysical Research: Solid Earth, 2013, 118, 4535-4546.	3.4	14
167	Controls on Larsen C Ice Shelf Retreat From a 60‥ear Satellite Data Record. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	14
168	Comment on "When Earth's freezer door is left ajar― Eos, 2003, 84, 315.	0.1	13
169	PHYSICS: Ancient Lessons for Our Future Climate. Science, 2004, 306, 821-822.	12.6	13
170	Antarctic sea ice: a self-organizing map-based perspective. Annals of Glaciology, 2007, 46, 391-396.	1.4	13
171	Reliability of ice-core science: historical insights. Journal of Glaciology, 2010, 56, 1095-1103.	2.2	13
172	Origin of stratified basal ice in outlet glaciers of Vatnajökull and Öræfajökull, Iceland. Boreas, 2010, 39, 457-470.	2.4	13
173	Glacier velocity variability due to rain-induced sliding and cavity formation. Earth and Planetary Science Letters, 2015, 432, 273-282.	4.4	13
174	Multiple Steady States in Ice-Water-Till Systems. Annals of Glaciology, 1990, 14, 1-5.	1.4	13
175	An integrated system for optical imaging of ice cores. Cold Regions Science and Technology, 2008, 53, 216-228.	3.5	12
176	Enhancement of volcanism and geothermal heat flux by iceâ€age cycling: A stress modeling study of Greenland. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1456-1471.	2.8	12
177	Five millennia of surface temperatures and ice core bubble characteristics from the WAIS Divide deep core, West Antarctica. Paleoceanography, 2016, 31, 416-433.	3.0	12
178	Effect of Stratigraphy on Radar-Altimetry Data Collected Over Ice Sheets. Annals of Glaciology, 1988, 11, 60-63.	1.4	11
179	9. Oxygen- and Hydrogen-Isotopic Ratios of Water in Precipitation: Beyond Paleothermometry. , 2001, , 527-554.		11
180	Temperature variability at Siple Dome, West Antarctica, derived from ECMWF re-analyses, SSM/I and SMMR brightness temperatures and AWS records. Annals of Glaciology, 2002, 34, 106-112.	1.4	11

#	Article	IF	CITATIONS
181	The PSU/UofC finite-element thermomechanical flowline model of ice-sheet evolution. Cold Regions Science and Technology, 2005, 42, 145-168.	3.5	10
182	Efficient Flowline Simulations of Ice Shelf–Ocean Interactions: Sensitivity Studies with a Fully Coupled Model. Journal of Physical Oceanography, 2013, 43, 2200-2210.	1.7	10
183	Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica. Cryosphere, 2018, 12, 325-341.	3.9	10
184	Bed-type variability and till (dis)continuity beneath Thwaites Glacier, West Antarctica. Annals of Glaciology, 2019, 60, 82-90.	1.4	10
185	Wet subglacial bedforms of the NE Greenland Ice Stream shear margins. Annals of Glaciology, 2019, 60, 91-99.	1.4	10
186	Interpretation of topography and bed properties beneath Thwaites Glacier, West Antarctica using seismic reflection methods. Earth and Planetary Science Letters, 2020, 550, 116543.	4.4	10
187	Meltwater drainage and iceberg calving observed in high-spatiotemporal resolution at Helheim Glacier, Greenland. Journal of Glaciology, 2022, 68, 812-828.	2.2	10
188	Ice-core insights into the flow and shut-down of Ice Stream C, West Antarctica. Annals of Glaciology, 2003, 37, 123-128.	1.4	9
189	Constraining attenuation uncertainty in common midpoint radar surveys of ice sheets. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1876-1890.	2.8	9
190	A continuum model (PSUMEL1) of ice mélange and its role during retreat of the Antarctic Ice Sheet. Geoscientific Model Development, 2018, 11, 5149-5172.	3.6	9
191	Conditions for bubble elongation in cold ice-sheet ice. Journal of Glaciology, 1999, 45, 147-153.	2.2	9
192	Seasonal variability in hydrologic-system response to intense rain events, Matanuska Glacier, Alaska, U.S.A Annals of Glaciology, 1999, 28, 267-271.	1.4	8
193	Ekman transport and upwelling during Younger Dryas estimated from wind stress from GENESIS Climate model experiments with variable North Atlantic heat convergence. Geophysical Research Letters, 1999, 26, 1333-1336.	4.0	8
194	The key to the past?. Nature, 2001, 409, 289-289.	27.8	8
195	Ice-shelf flexure and tidal forcing of Bindschadler Ice Stream, West Antarctica. Earth and Planetary Science Letters, 2014, 395, 184-193.	4.4	8
196	Conditions for the reversal of ice/air surface slope on ice streams and shelves: a model study. Annals of Glaciology, 2005, 40, 139-144.	1.4	6
197	Numerical modeling of valley glacier stagnation as a paleoclimatic indicator. Quaternary Research, 2010, 73, 403-409.	1.7	6
198	A Viscoelastic Model of Ice Stream Flow with Application to Stick-Slip Motion. Frontiers in Earth Science, 2016, 4, .	1.8	6

#	Article	IF	CITATIONS
199	Grounding zone subglacial properties from calibrated active-source seismic methods. Cryosphere, 2021, 15, 1863-1880.	3.9	6
200	Characteristics of the sticky spot of Kamb Ice Stream, West Antarctica. Journal of Geophysical Research F: Earth Surface, 2017, 122, 641-653.	2.8	5
201	Magnetic anisotropy and debris-dependent rheological heterogeneity within stratified basal ice. Journal of Glaciology, 2019, 65, 770-779.	2.2	5
202	Isotopic composition of vent discharge from the Matanuska Glacier, Alaska: Implications for the origin of basal ice. , 1999, , .		4
203	Morphology and Surface Characteristics of the West Antarctic Ice Sheet. Antarctic Research Series, 0, , 13-27.	0.2	4
204	Three-Dimensional Coordination Number from Two-Dimensional Measurements: A New Method. Journal of Glaciology, 1986, 32, 391-396.	2.2	3
205	Implications of abrupt climate change. Transactions of the American Clinical and Climatological Association, 2004, 115, 305-17.	0.5	3
206	Reply to Shulmeister et al. comment on "Glacial advance and stagnation caused by Rock Avalanches― Earth and Planetary Science Letters, 2010, 298, 450-450.	4.4	2
207	Instruments and methods: a case study of ice core bubbles as strain indicators. Annals of Glaciology, 2019, 60, 8-19.	1.4	2
208	Evaluation of ice-stream model sensitivities for parameter estimation. Earth and Planetary Science Letters, 2019, 516, 49-55.	4.4	2
209	Effect of Stratigraphy on Radar-Altimetry Data Collected Over Ice Sheets. Annals of Glaciology, 1988, 11, 60-63.	1.4	1
210	Challenges in the Use of Cosmogenic Exposure Dating of Moraine Boulders to Trace the Geographic Extents of Abrupt Climate Changes: The Younger Dryas Example. Geophysical Monograph Series, 2011, , 111-122.	0.1	1