
Maurizio C Capogrossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10515821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular Nucleophosmin Is Increased in Psoriasis and Correlates With the Determinants of Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, 867813.	2.4	3
2	MITO-Luc/GFP zebrafish model to assess spatial and temporal evolution of cell proliferation in vivo. Scientific Reports, 2021, 11, 671.	3.3	4
3	Doxorubicin induces an alarmin-like TLR4-dependent autocrine/paracrine action of Nucleophosmin in human cardiac mesenchymal progenitor cells. BMC Biology, 2021, 19, 124.	3.8	7
4	Aging, MicroRNAs, and Heart Failure. Current Problems in Cardiology, 2020, 45, 100406.	2.4	16
5	Molecular therapies delaying cardiovascular aging: disease- or health-oriented approaches. Vascular Biology (Bristol, England), 2020, 2, R45-R58.	3.2	6
6	Nuclear Hmgb1. JACC Basic To Translational Science, 2019, 4, 248-250.	4.1	3
7	High-dose intramyocardial HMCB1 induces long-term cardioprotection in sheep with myocardial infarction. Drug Delivery and Translational Research, 2019, 9, 935-944.	5.8	7
8	The Janus face of HMGB1 in heart disease: a necessary update. Cellular and Molecular Life Sciences, 2019, 76, 211-229.	5.4	99
9	Atherosclerotic plaque instability in carotid arteries: miR-200c as a promising biomarker. Clinical Science, 2018, 132, 2423-2436.	4.3	38
10	Role of miR-200c in Myogenic Differentiation Impairment via p66Shc: Implication in Skeletal Muscle Regeneration of Dystrophic mdx Mice. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	4.0	21
11	miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase). Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2079-2090.	2.4	93
12	Role of psoriasis on subclinical cardiovascular disease. Minerva Medica, 2018, 109, 255-258.	0.9	4
13	The Emerging Role of miR-200 Family in Cardiovascular Diseases. Circulation Research, 2017, 120, 1399-1402.	4.5	45
14	Identification of miR-31-5p, miR-141-3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell, 2017, 16, 262-272.	6.7	48
15	Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells. Cell Death and Disease, 2017, 8, e3020-e3020.	6.3	33
16	Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2693-2704.	3.8	35
17	The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration. , 2017, 171, 43-55.		12
18	The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation. Oncotarget, 2017, 8, 2628-2646.	1.8	5

#	Article	IF	CITATIONS
19	Oxidative stress, microRNAs and cytosolic calcium homeostasis. Cell Calcium, 2016, 60, 207-217.	2.4	40
20	Power Is Nothing Without Control. Circulation Research, 2016, 119, 988-991.	4.5	5
21	Cyclophilin A modulates bone marrow-derived CD117+ cells and enhances ischemia-induced angiogenesis via the SDF-1/CXCR4 axis. International Journal of Cardiology, 2016, 212, 324-335.	1.7	22
22	Methylation profiling by bisulfite sequencing analysis of the mtDNA Non-Coding Region in replicative and senescent Endothelial Cells. Mitochondrion, 2016, 27, 40-47.	3.4	51
23	Bone Good to the Heart. Circulation Research, 2015, 116, 16-18.	4.5	2
24	Characterization of the Pall Celeris system as a point-of-care device for therapeutic angiogenesis. Cytotherapy, 2015, 17, 1302-1313.	0.7	29
25	The mitochondrial IncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells. Journal of Molecular and Cellular Cardiology, 2015, 81, 62-70.	1.9	133
26	c-kit+ cells: the tell-tale heart of cardiac regeneration?. Cellular and Molecular Life Sciences, 2015, 72, 1725-1740.	5.4	19
27	Chromatin methylation and cardiovascular aging. Journal of Molecular and Cellular Cardiology, 2015, 83, 21-31.	1.9	18
28	MicroRNAs in Cardiac Regeneration. , 2015, , 917-942.		1
29	Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. International Journal of Cardiology, 2015, 197, 333-347.	1.7	71
30	Generation of cardiac progenitor cells through epicardial to mesenchymal transition. Journal of Molecular Medicine, 2015, 93, 735-748.	3.9	18
31	Granulocyte-colony stimulating factor for large anterior ST-elevation myocardial infarction: Rationale and design of the prospective randomized phase III STEM-AMI OUTCOME trial. American Heart Journal, 2015, 170, 652-658.e7.	2.7	9
32	Acetylation mediates Cx43 reduction caused by electrical stimulation. Journal of Molecular and Cellular Cardiology, 2015, 87, 54-64.	1.9	15
33	Bone Marrow Cell Therapy for Ischemic Heart Disease. Circulation Research, 2015, 117, 490-493.	4.5	11
34	microRNAs: Promising Biomarkers and Therapeutic Targets of Acute Myocardial Ischemia. Current Vascular Pharmacology, 2015, 13, 305-315.	1.7	22
35	Syngeneic Cardiac and Bone Marrow Stromal Cells Display Tissue-Specific microRNA Signatures and microRNA Subsets Restricted to Diverse Differentiation Processes. PLoS ONE, 2014, 9, e107269.	2.5	6

Nitric Oxide, Oxidative Stress, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mtext>p</mml:mtext><mml:mtext>66</mml:mtext></mml:mtext></mml:mrow> in Diabetic Endothelial Dysfunction. BioMed Research International, 2014, 2014, 1-16.

#	Article	IF	CITATIONS
37	G-CSF treatment for STEMI: final 3-year follow-up of the randomised placebo-controlled STEM-AMI trial. Heart, 2014, 100, 574-581.	2.9	18
38	Transcriptional control of skin reepithelialization. Journal of Dermatological Science, 2014, 73, 3-9.	1.9	31
39	Identification of Kita (c-Kit) positive cells in the heart of adult zebrafish. International Journal of Cardiology, 2014, 175, 204-205.	1.7	3
40	Hypoxia-Induced miR-210 Modulates Tissue Response to Acute Peripheral Ischemia. Antioxidants and Redox Signaling, 2014, 21, 1177-1188.	5.4	47
41	The mitochondrial genome in aging and senescence. Ageing Research Reviews, 2014, 18, 1-15.	10.9	63
42	Admission levels of circulating miR-499-5p and risk of death in elderly patients after acute non-ST elevation myocardial infarction. International Journal of Cardiology, 2014, 172, e276-e278.	1.7	46
43	Doxorubicin and Trastuzumab Regimen Induces Biventricular Failure in Mice. Journal of the American Society of Echocardiography, 2014, 27, 568-579.	2.8	61
44	The Histone Acetylase Activator Pentadecylidenemalonate 1b Rescues Proliferation and Differentiation in the Human Cardiac Mesenchymal Cells of Type 2 Diabetic Patients. Diabetes, 2014, 63, 2132-2147.	0.6	66
45	Circulating microRNAs (miRs) for diagnosing acute myocardial infarction: An exciting challenge. International Journal of Cardiology, 2013, 167, 3028-3029.	1.7	18
46	Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. International Journal of Cardiology, 2013, 167, 531-536.	1.7	214
47	When Stemness Meets Engineering: Towards "Niche―Control of Stem Cell Functions for Enhanced Cardiovascular Regeneration. , 2013, , 457-473.		0
48	Ex vivo acidic preconditioning enhances bone marrow ckit+ cell therapeutic potential via increased CXCR4 expression. European Heart Journal, 2013, 34, 2007-2016.	2.2	15
49	Transcriptional Profiling of Hmgb1-Induced Myocardial Repair Identifies a Key Role for Notch Signaling. Molecular Therapy, 2013, 21, 1841-1851.	8.2	22
50	Growth Induction and Low-Oxygen Apoptosis Inhibition of Human CD34+Progenitors in Collagen Gels. BioMed Research International, 2013, 2013, 1-5.	1.9	2
51	c-kit–Positive Cardiac Progenitor Cells. Circulation Research, 2013, 112, 1202-1204.	4.5	14
52	Detrimental Effect of Class-selective Histone Deacetylase Inhibitors during Tissue Regeneration following Hindlimb Ischemia. Journal of Biological Chemistry, 2013, 288, 22915-22929.	3.4	29
53	A Nitric Oxide-dependent Cross-talk between Class I and III Histone Deacetylases Accelerates Skin Repair. Journal of Biological Chemistry, 2013, 288, 11004-11012.	3.4	74
54	Enhancement of lysine acetylation accelerates wound repair. Communicative and Integrative Biology, 2013, 6, e25466.	1.4	37

#	Article	IF	CITATIONS
55	Hypoxia/Reoxygenation Cardiac Injury and Regeneration in Zebrafish Adult Heart. PLoS ONE, 2013, 8, e53748.	2.5	68
56	Estrogen-Dependent Dynamic Profile of eNOS-DNA Associations in Prostate Cancer. PLoS ONE, 2013, 8, e62522.	2.5	22
57	Diagnostic Potential of Plasmatic MicroRNA Signatures in Stable and Unstable Angina. PLoS ONE, 2013, 8, e80345.	2.5	118
58	Role of MicroRNAs and ZEB1 Downmodulation in Oxidative Stress-Induced Apoptosis and Senescence. , 2013, , 169-180.		0
59	P300/CBP Associated Factor Regulates Nitroglycerin-Dependent Arterial Relaxation by N ^ε -Lysine Acetylation of Contractile Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2435-2443.	2.4	29
60	C/EBPÎ ³ Regulates Wound Repair and EGF Receptor Signaling. Journal of Investigative Dermatology, 2012, 132, 1908-1917.	0.7	30
61	Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. Rna, 2012, 18, 472-484.	3.5	121
62	MicroRNAs and myocardial infarction. Current Opinion in Cardiology, 2012, 27, 228-235.	1.8	34
63	The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovascular Research, 2012, 94, 400-407.	3.8	121
64	Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals. Molecular Biology of the Cell, 2012, 23, 1467-1474.	2.1	33
65	Analysis of Biodistribution and Engraftment into the Liver of Genetically Modified Mesenchymal Stromal Cells Derived from Adipose Tissue. Cell Transplantation, 2012, 21, 1997-2008.	2.5	31
66	Hypoxia-inducible Factor 1-α Induces miR-210 in Normoxic Differentiating Myoblasts. Journal of Biological Chemistry, 2012, 287, 44761-44771.	3.4	85
67	Patient profile modulates cardiac c-kit+ progenitor cell availability and amplification potential. Translational Research, 2012, 160, 363-373.	5.0	25
68	Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties. Differentiation, 2012, 83, 260-270.	1.9	26
69	MicroRNA Dysregulation in Diabetic Ischemic Heart Failure Patients. Diabetes, 2012, 61, 1633-1641.	0.6	206
70	ROD1 Is a Seedless Target Gene of Hypoxia-Induced miR-210. PLoS ONE, 2012, 7, e44651.	2.5	35
71	In Vitro Epigenetic Reprogramming of Human Cardiac Mesenchymal Stromal Cells into Functionally Competent Cardiovascular Precursors. PLoS ONE, 2012, 7, e51694.	2.5	30
72	Deregulated MicroRNAs in Myotonic Dystrophy Type 2. PLoS ONE, 2012, 7, e39732.	2.5	81

#	Article	IF	CITATIONS
73	Differential levels of circulating progenitor cells in acute coronary syndrome patients with a first event versus patients with recurring events. International Journal of Cardiology, 2011, 149, 50-54.	1.7	13
74	Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscular Disorders, 2011, 21, 81-88.	0.6	109
75	Enhanced Healing of Diabetic Wounds by Topical Administration of Adipose Tissue-Derived Stromal Cells Overexpressing Stromal-Derived Factor-1: Biodistribution and Engraftment Analysis by Bioluminescent Imaging. Stem Cells International, 2011, 2011, 1-11.	2.5	47
76	Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells. PLoS ONE, 2011, 6, e22158.	2.5	21
77	The epicardium in cardiac repair: From the stem cell view. , 2011, 129, 82-96.		80
78	Endothelial and cardiac progenitors: Boosting, conditioning and (re)programming for cardiovascular repair. , 2011, 129, 50-61.		26
79	microRNAs as peripheral blood biomarkers of cardiovascular disease. Vascular Pharmacology, 2011, 55, 111-118.	2.1	65
80	Increase of plasma IL-9 and decrease of plasma IL-5, IL-7, and IFN-Î ³ in patients with chronic heart failure. Journal of Translational Medicine, 2011, 9, 28.	4.4	60
81	NO points to epigenetics in vascular development. Cardiovascular Research, 2011, 90, 447-456.	3.8	23
82	The FGF-2-Derived Peptide FREG Inhibits Melanoma Growth In Vitro and In Vivo. Molecular Therapy, 2011, 19, 266-273.	8.2	14
83	Human epicardium-derived cells fuse with high efficiency with skeletal myotubes and differentiate toward the skeletal muscle phenotype: a comparison study with stromal and endothelial cells. Molecular Biology of the Cell, 2011, 22, 581-592.	2.1	5
84	Endothelial Fate and Angiogenic Properties of Human CD34+Progenitor Cells in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1589-1597.	2.4	30
85	The role of nuclear endothelial nitric oxide synthase in the endothelial and prostate microenvironments. Hormone Molecular Biology and Clinical Investigation, 2011, 5, 91-6.	0.7	5
86	Letter by D'Alessandra et al Regarding Article, "Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease― Circulation: Cardiovascular Genetics, 2011, 4, e7; author reply e8.	5.1	8
87	Knockdown of Cyclin-dependent Kinase Inhibitors Induces Cardiomyocyte Re-entry in the Cell Cycle. Journal of Biological Chemistry, 2011, 286, 8644-8654.	3.4	79
88	N ^ε -lysine acetylation determines dissociation from GAP junctions and lateralization of connexin 43 in normal and dystrophic heart. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2795-2800.	7.1	93
89	Smad-Interacting Protein-1 and MicroRNA 200 Family Define a Nitric Oxide–Dependent Molecular Circuitry Involved in Embryonic Stem Cell Mesendoderm Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 898-907.	2.4	26
90	Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovascular Research, 2011, 89, 650-660.	3.8	114

#	Article	IF	CITATIONS
91	C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovascular Research, 2011, 89, 362-373.	3.8	77
92	Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1875-H1884.	3.2	29
93	Cardiac Stem Cells: Tales, Mysteries and Promises in Heart Generation and Regeneration. , 2011, , 265-286.		1
94	HMGB1 Attenuates Cardiac Remodelling in the Failing Heart via Enhanced Cardiac Regeneration and miR-206-Mediated Inhibition of TIMP-3. PLoS ONE, 2011, 6, e19845.	2.5	105
95	RAM, an RGDS Analog, Exerts Potent Anti-Melanoma Effects In Vitro and In Vivo. PLoS ONE, 2011, 6, e25352.	2.5	9
96	Endothelial Progenitor Cells from Cord Blood: Magic Bullets Against Ischemia?. , 2011, , 205-213.		0
97	GMPâ€based CD133 ⁺ cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy. Journal of Cellular and Molecular Medicine, 2010, 14, 1619-1634.	3.6	16
98	The histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces cardiac arrhythmias in dystrophic mice. Cardiovascular Research, 2010, 87, 73-82.	3.8	43
99	microRNA: Emerging therapeutic targets in acute ischemic diseases. , 2010, 125, 92-104.		166
100	Gene transfer into human cord bloodâ^'derived CD34+ cells by adeno-associated viral vectors. Experimental Hematology, 2010, 38, 707-717.	0.4	17
101	Induction of myogenic differentiation by SDFâ€1 via CXCR4 and CXCR7 receptors. Muscle and Nerve, 2010, 41, 828-835.	2.2	40
102	Nitric Oxide Determines Mesodermic Differentiation of Mouse Embryonic Stem Cells by Activating Class IIa Histone Deacetylases: Potential Therapeutic Implications in a Mouse Model of Hindlimb Ischemia. Stem Cells, 2010, 28, 431-442.	3.2	50
103	Comment on: Biscetti et al. (2010) High-Mobility Group Box-1 Protein Promotes Angiogenesis After Peripheral Ischemia in Diabetic Mice Through a VEGF-Dependent Mechanism. Diabetes;59:1496-1505. Diabetes, 2010, 59, e7-e7.	0.6	3
104	Granulocyte colonyâ€stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the singleâ€blind, randomized, placeboâ€controlled multicentre STem cEll Mobilization in Acute Myocardial Infarction (STEMâ€AMI) Trial. European Journal of Heart Failure, 2010, 12, 1111-1121.	7.1	48
105	Role of HIF-1α in proton-mediated CXCR4 down-regulation in endothelial cells. Cardiovascular Research, 2010, 86, 293-301.	3.8	19
106	Regulation of the endothelial cell cycle by the ubiquitin-proteasome system. Cardiovascular Research, 2010, 85, 272-280.	3.8	40
107	Magnetic resonance imaging of human endothelial progenitors reveals opposite effects on vascular and muscle regeneration into ischaemic tissues. Cardiovascular Research, 2010, 85, 503-513.	3.8	21
108	Histone deacetylase inhibitors: Keeping momentum for neuromuscular and cardiovascular diseases treatment. Pharmacological Research, 2010, 62, 3-10.	7.1	39

#	Article	IF	CITATIONS
109	Intracellular targets of RGDS peptide in melanoma cells. Molecular Cancer, 2010, 9, 84.	19.2	27
110	Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: Role of the pericardial fluid. Journal of Molecular and Cellular Cardiology, 2010, 48, 609-618.	1.9	126
111	Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 2010, 31, 2765-2773.	2.2	709
112	MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiological Genomics, 2010, 42, 420-426.	2.3	123
113	The telomerase tale in vascular aging: regulation by estrogens and nitric oxide signaling. Journal of Applied Physiology, 2009, 106, 333-337.	2.5	33
114	Homeodomain Interacting Protein Kinase 2 Activation Compromises Endothelial Cell Response to Laminar Flow: Protective Role of p21waf1,cip1,sdi1. PLoS ONE, 2009, 4, e6603.	2.5	8
115	p66ShcA modulates oxidative stress and survival of endothelial progenitor cells in response to high glucose. Cardiovascular Research, 2009, 82, 421-429.	3.8	61
116	Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB Journal, 2009, 23, 2131-2141.	0.5	69
117	An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210. Journal of Biological Chemistry, 2009, 284, 35134-35143.	3.4	248
118	Gene expression profiles in peripheral blood mononuclear cells of chronic heart failure patients. Physiological Genomics, 2009, 38, 233-240.	2.3	68
119	Common microâ€RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB Journal, 2009, 23, 3335-3346.	0.5	235
120	NO sparks off chromatin: Tales of a multifaceted epigenetic regulator. , 2009, 123, 344-352.		69
121	Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 2009, 13, 3405-3414.	3.6	36
122	Comparison of the Effects of Ramipril Versus Telmisartan on High-Sensitivity C-Reactive Protein and Endothelial Progenitor Cells After Acute Coronary Syndrome. American Journal of Cardiology, 2009, 103, 1500-1505.	1.6	26
123	Thrombinâ€mediated impairment of fibroblast growth factorâ€2 activity. FEBS Journal, 2009, 276, 3277-3289.	4.7	4
124	Endothelial progenitor cells and cardiovascular homeostasis: Clinical implications. International Journal of Cardiology, 2009, 131, 156-167.	1.7	55
125	Regenerative Therapy in Peripheral Artery Disease. Cardiovascular Therapeutics, 2009, 27, 289-304.	2.5	38
126	Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo. Neoplasia, 2009, 11, 732-W7.	5.3	32

#	Article	IF	CITATIONS
127	Endothelial NOS, estrogen receptor β, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. Journal of Clinical Investigation, 2009, 119, 1093-1108.	8.2	110
128	High-Mobility Group Box 1 Protein in Human and Murine Skin: Involvement in Wound Healing. Journal of Investigative Dermatology, 2008, 128, 1545-1553.	0.7	146
129	HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. Journal of Molecular and Cellular Cardiology, 2008, 44, 683-693.	1.9	97
130	HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19183-19187.	7.1	234
131	Protein Phosphatase 2A Subunit PR70 Interacts with pRb and Mediates Its Dephosphorylation. Molecular and Cellular Biology, 2008, 28, 873-882.	2.3	55
132	MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3. Journal of Biological Chemistry, 2008, 283, 15878-15883.	3.4	786
133	Nitric Oxide Modulates Chromatin Folding in Human Endothelial Cells via Protein Phosphatase 2A Activation and Class II Histone Deacetylases Nuclear Shuttling. Circulation Research, 2008, 102, 51-58.	4.5	114
134	Functional properties of cells obtained from human cord blood CD34 ⁺ stem cells and mouse cardiac myocytes in coculture. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1541-H1549.	3.2	12
135	Spontaneous myogenic differentiation of Flk-1-positive cells from adult pancreas and other nonmuscle tissues. American Journal of Physiology - Cell Physiology, 2008, 294, C604-C612.	4.6	7
136	Estrogen Receptor-α and Endothelial Nitric Oxide Synthase Nuclear Complex Regulates Transcription of Human Telomerase. Circulation Research, 2008, 103, 34-42.	4.5	81
137	Therapeutic Angiogenesis With Intramuscular NV1FGF Improves Amputation-free Survival in Patients With Critical Limb Ischemia. Molecular Therapy, 2008, 16, 972-978.	8.2	294
138	p66ShcA and Oxidative Stress Modulate Myogenic Differentiation and Skeletal Muscle Regeneration after Hind Limb Ischemia. Journal of Biological Chemistry, 2007, 282, 31453-31459.	3.4	69
139	Multiple Effects of High Mobility Group Box Protein 1 in Skeletal Muscle Regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2377-2383.	2.4	95
140	Role of rat α adducin in angiogenesis: Null effect of the F316Y polymorphism. Cardiovascular Research, 2007, 75, 608-617.	3.8	8
141	Identification of Myocardial and Vascular Precursor Cells in Human and Mouse Epicardium. Circulation Research, 2007, 101, 1255-1265.	4.5	216
142	Pivotal Advances: High-mobility group box 1 protein-a cytokine with a role in cardiac repair. Journal of Leukocyte Biology, 2007, 81, 41-45.	3.3	51
143	Protective Effects of Parecoxib, a Cyclo-Oxygenase-2 Inhibitor, in Postinfarction Remodeling in the Rat. Journal of Cardiovascular Pharmacology, 2007, 50, 571-577.	1.9	22
144	Molecular mechanisms of cardiomyocyte regeneration and therapeutic outlook. Trends in Molecular Medicine, 2007, 13, 125-133.	6.7	17

#	Article	IF	CITATIONS
145	Heterodimerization of FGF-receptor 1 and PDGF-receptor- $\hat{1}\pm$: a novel mechanism underlying the inhibitory effect of PDGF-BB on FGF-2 in human cells. Blood, 2006, 107, 1896-1902.	1.4	40
146	HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. Journal of Cell Biology, 2006, 174, 1059-1069.	5.2	231
147	Glycated Fibroblast Growth Factor-2 Is Quickly Producedin Vitroupon Low-Millimolar Glucose Treatment and Detectedin Vivoin Diabetic Mice. Molecular Endocrinology, 2006, 20, 2806-2818.	3.7	19
148	Axl receptor activation mediates laminar shear stress anti-apoptotic effects in human endothelial cells. Cardiovascular Research, 2006, 71, 754-763.	3.8	35
149	Papilloma protein E6 abrogates shear stress-dependent survival in human endothelial cells: Evidence for specialized functions of paxillin. Cardiovascular Research, 2006, 70, 578-588.	3.8	9
150	Myogenic potential of adipose-tissue-derived cells. Journal of Cell Science, 2006, 119, 2945-2952.	2.0	203
151	How Senescent Vascular Cells Lose Their Clock Age-Dependent Impairment of Circadian Rhythmicity in Smooth Muscle Cells. Circulation Research, 2006, 98, 450-452.	4.5	3
152	Cyclin D1 degradation enhances endothelial cell survival upon oxidative stress. FASEB Journal, 2006, 20, 1242-1244.	0.5	42
153	RGDS peptide inhibits activation of lymphocytes and adhesion of activated lymphocytes to human umbilical vein endothelial cells in vitro. Immunology and Cell Biology, 2005, 83, 25-32.	2.3	1
154	Electrophysiological properties of mouse bone marrow c-kit cells co-cultured onto neonatal cardiac myocytes. Cardiovascular Research, 2005, 66, 482-492.	3.8	41
155	RGDS peptide inhibits activation of lymphocytes and adhesion of activated lymphocytes to human umbilical vein endothelial cells in vitro. Immunology and Cell Biology, 2005, 83, 25-32.	2.3	4
156	Epigenetic Histone Modification and Cardiovascular Lineage Programming in Mouse Embryonic Stem Cells Exposed to Laminar Shear Stress. Circulation Research, 2005, 96, 501-508.	4.5	178
157	Exogenous High-Mobility Group Box 1 Protein Induces Myocardial Regeneration After Infarction via Enhanced Cardiac C-Kit ⁺ Cell Proliferation and Differentiation. Circulation Research, 2005, 97, e73-83.	4.5	256
158	Laminar shear stress inhibits CXCR4 expression on endothelial cells: functional consequences for atherogenesis. FASEB Journal, 2005, 19, 1-25.	0.5	50
159	Telomerase Mediates Vascular Endothelial Growth Factor-dependent Responsiveness in a Rat Model of Hind Limb Ischemia. Journal of Biological Chemistry, 2005, 280, 14790-14798.	3.4	76
160	p66 ShcA Modulates Tissue Response to Hindlimb Ischemia. Circulation, 2004, 109, 2917-2923.	1.6	111
161	Hypoxia Inhibits Myogenic Differentiation through Accelerated MyoD Degradation. Journal of Biological Chemistry, 2004, 279, 16332-16338.	3.4	130
162	Enhanced Arteriogenesis and Wound Repair in Dystrophin-Deficient mdx Mice. Circulation, 2004, 110, 3341-3348.	1.6	53

#	Article	IF	CITATIONS
163	Cardiac Stem Cells Fail With Aging. Circulation Research, 2004, 94, 411-413.	4.5	54
164	p21Waf1/Cip1/Sdi1 mediates shear stress-dependent antiapoptotic function. Cardiovascular Research, 2004, 61, 693-704.	3.8	22
165	Autologous Peripheral Blood Stem Cell Transplantation for Myocardial Regeneration: A Novel Strategy for Cell Collection and Surgical Injection. Annals of Thoracic Surgery, 2004, 78, 1808-1812.	1.3	73
166	Endothelial progenitor cells: a potential versatile tool for the treatment of ischemic cardiomyopathies — a clinician's point of view. International Journal of Cardiology, 2004, 95, S34-S37.	1.7	3
167	SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood, 2004, 104, 3472-3482.	1.4	489
168	RGDS peptide induces caspase 8 and caspase 9 activation in human endothelial cells. Blood, 2004, 103, 4180-4187.	1.4	67
169	Analysis of the role of chemokines in angiogenesis. Journal of Immunological Methods, 2003, 273, 83-101.	1.4	168
170	Arteriogenesis Induced by Intramyocardial Vascular Endothelial Growth Factor 165 Gene Transfer in Chronically Ischemic Pigs. Human Gene Therapy, 2003, 14, 1307-1318.	2.7	43
171	Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function. American Journal of Pathology, 2003, 163, 1417-1428.	3.8	208
172	Identification of a Novel Domain of Fibroblast Growth Factor 2 Controlling Its Angiogenic Properties. Journal of Biological Chemistry, 2003, 278, 8751-8760.	3.4	40
173	The chemokine receptor CCR8 mediates rescue from dexamethasone-induced apoptosis via an ERK-dependent pathway. Journal of Leukocyte Biology, 2003, 73, 201-207.	3.3	46
174	Oxidative Stress Induces Protein Phosphatase 2A-dependent Dephosphorylation of the Pocket Proteins pRb, p107, and p130. Journal of Biological Chemistry, 2003, 278, 19509-19517.	3.4	105
175	Myoendothelial Differentiation of Human Umbilical Cord Blood–Derived Stem Cells in Ischemic Limb Tissues. Circulation Research, 2003, 93, e51-62.	4.5	176
176	Shear Stress–Mediated Chromatin Remodeling Provides Molecular Basis for Flow-Dependent Regulation of Gene Expression. Circulation Research, 2003, 93, 155-161.	4.5	119
177	Acidification Prevents Endothelial Cell Apoptosis by Axl Activation. Circulation Research, 2002, 91, e4-12.	4.5	56
178	Different Effects of High and Low Shear Stress on Platelet-Derived Growth Factor Isoform Release by Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 405-411.	2.4	61
179	Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. Journal of Neurosurgery, 2002, 97, 161-168.	1.6	135
180	Platelet-derived Growth Factor-BB and Basic Fibroblast Growth Factor Directly Interact in Vitro with High Affinity. Journal of Biological Chemistry, 2002, 277, 1284-1291.	3.4	27

#	Article	IF	CITATIONS
181	Platelet-derived growth factor inhibits basic fibroblast growth factor angiogenic properties in vitro and in vivo through its α receptor. Blood, 2002, 99, 2045-2053.	1.4	54
182	Sugar-Induced Modification of Fibroblast Growth Factor 2 Reduces Its Angiogenic Activity in Vivo. American Journal of Pathology, 2002, 161, 531-541.	3.8	46
183	Nerve growth factor induces angiogenic activity in a mouse model of hindlimb ischemia. Neuroscience Letters, 2002, 323, 109-112.	2.1	68
184	Age-dependent effects of repeated immunization with a first generation adenovirus vector on the immune response and transgene expression in young and old rats. Experimental Gerontology, 2002, 37, 823-831.	2.8	15
185	The Chemokine CXCL13 (BCA-1) Inhibits FGF-2 Effects on Endothelial Cells. Biochemical and Biophysical Research Communications, 2001, 289, 19-24.	2.1	41
186	Transglutaminase Activity Is Involved in Polyamine-Induced Programmed Cell Death. Experimental Cell Research, 2001, 271, 118-129.	2.6	47
187	Local Delivery of Human Tissue Kallikrein Gene Accelerates Spontaneous Angiogenesis in Mouse Model of Hindlimb Ischemia. Circulation, 2001, 103, 125-132.	1.6	186
188	Wild-Type p53 Gene Transfer Inhibits Invasion and Reduces Matrix Metalloproteinase-2 Levels in p53-Mutated Human Melanoma Cells. Journal of Investigative Dermatology, 2000, 114, 1188-1194.	0.7	40
189	I-309 binds to and activates endothelial cell functions and acts as an angiogenic molecule in vivo. Blood, 2000, 96, 4039-4045.	1.4	82
190	Nuclear Factor-l [®] B and cAMP Response Element Binding Protein Mediate Opposite Transcriptional Effects on the Flk-1/KDR Gene Promoter. Circulation Research, 2000, 86, .	4.5	25
191	Adenovirus-Mediated VEGF ₁₂₁ Gene Transfer Stimulates Angiogenesis in Normoperfused Skeletal Muscle and Preserves Tissue Perfusion After Induction of Ischemia. Circulation, 2000, 102, 565-571.	1.6	130
192	Acidosis Inhibits Endothelial Cell Apoptosis and Function and Induces Basic Fibroblast Growth Factor and Vascular Endothelial Growth Factor Expression. Circulation Research, 2000, 86, 312-318.	4.5	142
193	Shear Stress Downregulation of Platelet-Derived Growth Factor Receptor-Î ² and Matrix Metalloprotease-2 Is Associated With Inhibition of Smooth Muscle Cell Invasion and Migration. Circulation, 2000, 102, 225-230.	1.6	89
194	Angiotensin II Type 1 Receptor Blockade Prevents Cardiac Remodeling in Bradykinin B 2 Receptor Knockout Mice. Hypertension, 2000, 35, 391-396.	2.7	37
195	Adenovirus-Mediated Human Tissue Kallikrein Gene Delivery Inhibits Neointima Formation Induced by Interruption of Blood Flow in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1459-1466.	2.4	28
196	Adenovirus-Mediated Human Tissue Kallikrein Gene Delivery Induces Angiogenesis in Normoperfused Skeletal Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 2379-2385.	2.4	76
197	CTLA4Ig Gene Transfer Prolongs Survival and Induces Donor-Specific Tolerance in a Rat Renal Allograft. Journal of the American Society of Nephrology: JASN, 2000, 11, 747-752.	6.1	64
198	Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of experimental intracranial human malignant glioma. Journal of Neuro-Oncology, 1999, 43, 99-108.	2.9	38

#	Article	IF	CITATIONS
199	Vascular permeability effect of adenovirus-mediated vascular endothelial growth factor gene transfer to the rabbit and rat skeletal muscle. Journal of Thoracic and Cardiovascular Surgery, 1999, 118, 339-347.	0.8	29
200	Adenovirus-Mediated Acidic Fibroblast Growth Factor Gene Transfer Induces Angiogenesis in the Nonischemic Rabbit Heart. Microvascular Research, 1999, 58, 238-249.	2.5	54
201	Dilated and Failing Cardiomyopathy in Bradykinin B2Receptor Knockout Mice. Circulation, 1999, 100, 2359-2365.	1.6	168
202	Adenovirus-Mediated Gene Transfer of the Human Tissue Inhibitor of Metalloproteinase-2 Blocks Vascular Smooth Muscle Cell Invasiveness In Vitro and Modulates Neointimal Development In Vivo. Circulation, 1998, 98, 2195-2201.	1.6	118
203	Cytosolic Alkalinization of Vascular Endothelial Cells Produced by an Abrupt Reduction in Fluid Shear Stress. Circulation Research, 1998, 82, 803-809.	4.5	18
204	Hydrogen Peroxide Induces Intracellular Calcium Oscillations in Human Aortic Endothelial Cells. Circulation, 1998, 97, 268-275.	1.6	120
205	Gene Therapy with Angiogenic Factors: A New Potential Approach to the Treatment of Ischemic Diseases. Journal of Molecular and Cellular Cardiology, 1997, 29, 2311-2325.	1.9	25
206	p21Waf1/Cip1 protects against p53-mediated apoptosis of human melanoma cells. Oncogene, 1997, 14, 929-935.	5.9	293
207	Adenovirus-mediated gene transfer of fibroblast growth factor-1: Angiogenesis and tumorigenicity in nude mice. , 1997, 73, 258-263.		8
208	Adenovirus-mediated gene transfer of wild-type p53 results in melanoma cell apoptosisin vitro andin vivo. International Journal of Cancer, 1995, 63, 673-679.	5.1	56
209	In Vivo Angiogenesis Induced by Recombinant Adenovirus Vectors Coding Either for Secreted or Nonsecreted Forms of Acidic Fibroblast Growth Factor. Human Gene Therapy, 1995, 6, 1457-1465.	2.7	74
210	Endoplasmic Reticulum Ca ²⁺ Depletion Unmasks a Caffeine-Induced Ca ²⁺ Influx in Human Aortic Endothelial Cells. Circulation Research, 1995, 77, 927-935.	4.5	30
211	VECF 165 Expressed by a Replication-Deficient Recombinant Adenovirus Vector Induces Angiogenesis In Vivo. Circulation Research, 1995, 77, 1077-1086.	4.5	137
212	Mechanisms of Relaxation: Perspectives from Studies in Single Cardiac Cells. , 1994, , 149-165.		5
213	Comparison between alpha-adrenergic- and K-opioidergic-mediated inositol(1,4,5)P3/inositol(1,3,4,5)P4 formation in adult cultured rat ventricular cardiomyocytes. Biochemical and Biophysical Research Communications, 1991, 179, 972-978.	2.1	39
214	Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 0, 13, 3405-3414.	3.6	41