
Lingling Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10514818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chemical Reviews, 2021, 121, 12035-12105.	47.7	294
2	Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity, 2016, 75, 96-104.	6.5	233
3	Homogeneous, Lowâ€volume, Efficient, and Sensitive Quantitation of Circulating Exosomal PD‣1 for Cancer Diagnosis and Immunotherapy Response Prediction. Angewandte Chemie - International Edition, 2020, 59, 4800-4805.	13.8	159
4	cGAS-STING–mediated DNA sensing maintains CD8 ⁺ T cell stemness and promotes antitumor T cell therapy. Science Translational Medicine, 2020, 12, .	12.4	121
5	Trends in miniaturized biosensors for point-of-care testing. TrAC - Trends in Analytical Chemistry, 2020, 122, 115701.	11.4	119
6	Fluidic Multivalent Membrane Nanointerface Enables Synergetic Enrichment of Circulating Tumor Cells with High Efficiency and Viability. Journal of the American Chemical Society, 2020, 142, 4800-4806.	13.7	114
7	Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Research and Therapy, 2015, 17, 131.	3.5	92
8	Nucleic Acids Analysis. Science China Chemistry, 2021, 64, 171-203.	8.2	88
9	Microfluidicâ€Based Exosome Analysis for Liquid Biopsy. Small Methods, 2021, 5, e2001131.	8.6	81
10	Microfluidic Singleâ€Cell Omics Analysis. Small, 2020, 16, e1903905.	10.0	80
11	ZBP1-MLKL necroptotic signaling potentiates radiation-induced antitumor immunity via intratumoral STING pathway activation. Science Advances, 2021, 7, eabf6290.	10.3	79
12	DNA Nanolithography Enables a Highly Ordered Recognition Interface in a Microfluidic Chip for the Efficient Capture and Release of Circulating Tumor Cells. Angewandte Chemie - International Edition, 2020, 59, 14115-14119.	13.8	74
13	Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells. TrAC - Trends in Analytical Chemistry, 2019, 117, 69-77.	11.4	61
14	MicroRNAâ€130b Ameliorates Murine Lupus Nephritis Through Targeting the Type I Interferon Pathway on Renal Mesangial Cells. Arthritis and Rheumatology, 2016, 68, 2232-2243.	5.6	59
15	T-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupus. Arthritis Research and Therapy, 2017, 19, 225.	3.5	58
16	Association of Abnormal Elevations in <scp>IFIT</scp> 3 With Overactive Cyclic <scp>GMP</scp> â€ <scp>AMP</scp> Synthase/Stimulator of Interferon Genes Signaling in Human Systemic Lupus Erythematosus Monocytes. Arthritis and Rheumatology, 2018, 70, 2036-2045.	5.6	57
17	Identification of Renal Long Non-coding RNA RP11-2B6.2 as a Positive Regulator of Type I Interferon Signaling Pathway in Lupus Nephritis. Frontiers in Immunology, 2019, 10, 975.	4.8	52
18	A Sequential Multidimensional Analysis Algorithm for Aptamer Identification based on Structure Analysis and Machine Learning. Analytical Chemistry, 2020, 92, 3307-3314.	6.5	45

LINGLING WU

#	Article	IF	CITATIONS
19	Beyond Capture: Circulating Tumor Cell Release and Singleâ€Cell Analysis. Small Methods, 2019, 3, 1800544.	8.6	41
20	Aptamer-Based Liquid Biopsy. ACS Applied Bio Materials, 2020, 3, 2743-2764.	4.6	38
21	Homogeneous, Lowâ€volume, Efficient, and Sensitive Quantitation of Circulating Exosomal PD‣1 for Cancer Diagnosis and Immunotherapy Response Prediction. Angewandte Chemie, 2020, 132, 4830-4835.	2.0	36
22	Identification of Cyclinâ€Dependent Kinase 1 as a Novel Regulator of Type I Interferon Signaling in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2016, 68, 1222-1232.	5.6	35
23	Selection of Aptamers Against Vimentin for Isolation and Release of Circulating Tumor Cells Undergoing Epithelial Mesenchymal Transition. Analytical Chemistry, 2020, 92, 5178-5184.	6.5	32
24	Single-Cell Digital Microfluidic Mass Spectrometry Platform for Efficient and Multiplex Genotyping of Circulating Tumor Cells. Analytical Chemistry, 2022, 94, 1108-1117.	6.5	25
25	Highly Sensitive Minimal Residual Disease Detection by Biomimetic Multivalent Aptamer Nanoclimber Functionalized Microfluidic Chip. Small, 2020, 16, e2000949.	10.0	24
26	Efficient Isolation and Phenotypic Profiling of Circulating Hepatocellular Carcinoma Cells via a Combinatorial-Antibody-Functionalized Microfluidic Synergetic-Chip. Analytical Chemistry, 2020, 92, 15229-15235.	6.5	23
27	MicroRNAs in Systemic Lupus Erythematosus: a Perspective on the Path from Biological Discoveries to Clinical Practice. Current Rheumatology Reports, 2020, 22, 17.	4.7	20
28	MiR-125a Is a critical modulator for neutrophil development. PLoS Genetics, 2017, 13, e1007027.	3.5	19
29	EZH2 Inhibition Interferes With the Activation of Type I Interferon Signaling Pathway and Ameliorates Lupus Nephritis in NZB/NZW F1 Mice. Frontiers in Immunology, 2021, 12, 653989.	4.8	17
30	Single ell Sequencing Methodologies: From Transcriptome to Multiâ€Dimensional Measurement. Small Methods, 2021, 5, e2100111.	8.6	17
31	Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells. Bioactive Materials, 2022, 11, 32-40.	15.6	15
32	Cilo-seq: highly sensitive cell-in-library-out single-cell transcriptome sequencing with digital microfluidics. Lab on A Chip, 2022, 22, 1971-1979.	6.0	14
33	Exosomal PD-L1: an effective liquid biopsy target to predict immunotherapy response. National Science Review, 2019, 6, 1103-1104.	9.5	13
34	Stimuli-Responsive Microfluidic Interface Enables Highly Efficient Capture and Release of Circulating Fetal Cells for Non-Invasive Prenatal Testing. Analytical Chemistry, 2020, 92, 9281-9286.	6.5	13
35	miR-152 Attenuates the Severity of Lupus Nephritis Through the Downregulation of Macrophage Migration Inhibitory Factor (MIF)-Induced Expression of COL1A1. Frontiers in Immunology, 2019, 10, 158.	4.8	12
36	Reversible Immunoaffinity Interface Enables Dynamic Manipulation of Trapping Force for Accumulated Capture and Efficient Release of Circulating Rare Cells. Advanced Science, 2021, 8, e2102070.	11.2	12

LINGLING WU

#	Article	IF	CITATIONS
37	DNA Nanolithography Enables a Highly Ordered Recognition Interface in a Microfluidic Chip for the Efficient Capture and Release of Circulating Tumor Cells. Angewandte Chemie, 2020, 132, 14219-14223.	2.0	6
38	Downregulation of Renal Hsa-miR-127-3p Contributes to the Overactivation of Type I Interferon Signaling Pathway in the Kidney of Lupus Nephritis. Frontiers in Immunology, 2021, 12, 747616.	4.8	6
39	Selective, user-friendly, highly porous, efficient, and rapid (SUPER) filter for isolation and analysis of rare tumor cells. Lab on A Chip, 2022, 22, 367-376.	6.0	3
40	Dispen-Seq: a single-microparticle dispenser based strategy towards flexible cell barcoding for single-cell RNA sequencing. Science China Chemistry, 2021, 64, 650-659.	8.2	2
41	177â€Decreased expression of renal MiR-127–3p contributes to the overactivation of interferon signaling pathway in the kidney of lupus nephritis. , 2019, , .		0
42	Inside Front Cover: Singleâ€Cell Sequencing Methodologies: From Transcriptome to Multiâ€Dimensional Measurement (Small Methods 6/2021). Small Methods, 2021, 5, 2170024.	8.6	0