Robert R H Anholt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1051413/publications.pdf

Version: 2024-02-01

93 papers 7,470 citations

41 h-index 80 g-index

101 all docs

101 docs citations

times ranked

101

7050 citing authors

#	Article	IF	CITATIONS
1	The Drosophila melanogaster Genetic Reference Panel. Nature, 2012, 482, 173-178.	27.8	1,756
2	Natural variation in genome architecture among 205 <i>Drosophila melanogaster</i> Genetic Reference Panel lines. Genome Research, 2014, 24, 1193-1208.	5 . 5	565
3	Systems genetics of complex traits in Drosophila melanogaster. Nature Genetics, 2009, 41, 299-307.	21.4	490
4	Epistasis dominates the genetic architecture of $\langle i \rangle$ Drosophila $\langle i \rangle$ quantitative traits. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15553-15559.	7.1	348
5	Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes, Brain and Behavior, 2011, 10, 648-657.	2.2	205
6	Genetic basis of transcriptome diversity in $\langle i \rangle$ Drosophila melanogaster $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6010-9.	7.1	134
7	Quantitative genetic analyses of complex behaviours in Drosophila. Nature Reviews Genetics, 2004, 5, 838-849.	16.3	127
8	Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila melanogaster. PLoS ONE, 2012, 7, e34745.	2.5	127
9	The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nature Genetics, 2003, 35, 180-184.	21.4	125
10	Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. ELife, $2015, 4, .$	6.0	121
11	Effects of Single <i>P</i> -Element Insertions on Olfactory Behavior in <i>Drosophila melanogaster</i> - Genetics, 1996, 143, 293-301.	2.9	119
12	Genetic architecture of natural variation in $\langle i \rangle$ Drosophila melanogaster $\langle i \rangle$ aggressive behavior. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3555-63.	7.1	115
13	Genetics of Aggression. Annual Review of Genetics, 2012, 46, 145-164.	7.6	113
14	Phenotypic Plasticity of the Drosophila Transcriptome. PLoS Genetics, 2012, 8, e1002593.	3 . 5	107
15	Analysis of natural variation reveals neurogenetic networks for <i>Drosophila</i> olfactory behavior. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1017-1022.	7.1	95
16	Plasticity of the Chemoreceptor Repertoire in Drosophila melanogaster. PLoS Genetics, 2009, 5, e1000681.	3. 5	93
17	Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biology, 2006, 7, R95.	9.6	90
18	Olfactomedin proteins: central players in development and disease. Frontiers in Cell and Developmental Biology, 2014, 2, 6.	3.7	84

#	Article	IF	CITATIONS
19	Neurogenetic networks for startle-induced locomotion in <i>Drosophila melanogaster</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12393-12398.	7.1	82
20	Genome-Wide Association for Sensitivity to Chronic Oxidative Stress in Drosophila melanogaster. PLoS ONE, 2012, 7, e38722.	2.5	82
21	Of Flies and Man:Drosophilaas a Model for Human Complex Traits. Annual Review of Genomics and Human Genetics, 2006, 7, 339-367.	6.2	80
22	Dynamic Genetic Interactions Determine Odor-Guided Behavior in Drosophila melanogaster. Genetics, 2006, 174, 1349-1363.	2.9	79
23	Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster. Genome Biology, 2007, 8, R231.	9.6	72
24	The Genetic Basis for Variation in Olfactory Behavior in Drosophila melanogaster. Chemical Senses, 2015, 40, 233-243.	2.0	71
25	Modulation of Feeding Behavior by Odorant-Binding Proteins in Drosophila melanogaster. Chemical Senses, 2014, 39, 125-132.	2.0	70
26	Epistatic Interactions Between smell-impaired Loci in Drosophila melanogaster. Genetics, 1998, 148, 1885-1891.	2.9	70
27	A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends in Molecular Medicine, 2013, 19, 586-593.	6.7	69
28	Complex genetic architecture of <i>Drosophila</i> aggressive behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17070-17075.	7.1	68
29	Pheromone Regulated Production of Inositol-(1, 4, 5)-Trisphosphate in the Mammalian Vomeronasal Organ*. Endocrinology, 1997, 138, 3497-3504.	2.8	65
30	Quantitative Genetic Variation of Odor-Guided Behavior in a Natural Population of Drosophila melanogaster. Genetics, 1996, 144, 727-735.	2.9	65
31	Phenotypic Plasticity and Genotype by Environment Interaction for Olfactory Behavior in <i>Drosophila melanogaster</i> . Genetics, 2008, 179, 1079-1088.	2.9	64
32	Characterization and differential expression of a human gene family of olfactomedin-related proteins. Genetical Research, 2000, 76, 41-50.	0.9	59
33	Natural Variation, Functional Pleiotropy and Transcriptional Contexts of <i>Odorant Binding Protein</i> Genes in <i>Drosophila melanogaster</i> Genetics, 2010, 186, 1475-1485.	2.9	57
34	Gene expression networks in the <i>Drosophila</i> Genetic Reference Panel. Genome Research, 2020, 30, 485-496.	5 . 5	55
35	<i>Vanaso</i> Is a Candidate Quantitative Trait Gene for Drosophila Olfactory Behavior. Genetics, 2002, 162, 1321-1328.	2.9	55
36	Polymorphisms in early neurodevelopmental genes affect natural variation in alcohol sensitivity in adult drosophila. BMC Genomics, 2015, 16, 865.	2.8	54

#	Article	IF	Citations
37	A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure. PLoS Genetics, 2017, 13, e1006907.	3.5	54
38	The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks. Genome Biology, 2012, 13, 239.	9.6	49
39	Genetics and genomics of alcohol sensitivity. Molecular Genetics and Genomics, 2014, 289, 253-269.	2.1	47
40	Context-dependent genetic architecture of Drosophila life span. PLoS Biology, 2020, 18, e3000645.	5.6	47
41	Genetic architecture of natural variation in visual senescence in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6620-E6629.	7.1	46
42	The DSC1 Channel, Encoded by the <i>smi60E</i> Locus, Contributes to Odor-Guided Behavior in <i>Drosophila melanogaster</i> Cenetics, 2002, 161, 1507-1516.	2.9	46
43	Alcohol Sensitivity in Drosophila: Translational Potential of Systems Genetics. Genetics, 2009, 183, 733-745.	2.9	45
44	Association of Polymorphisms in Odorant-Binding Protein Genes With Variation in Olfactory Response to Benzaldehyde in Drosophila. Genetics, 2007, 177, 1655-1665.	2.9	43
45	Odorant Receptor Polymorphisms and Natural Variation in Olfactory Behavior in <i>Drosophila melanogaster</i> . Genetics, 2010, 186, 687-697.	2.9	42
46	The Genetic Basis for Variation in Sensitivity to Lead Toxicity in <i>Drosophila melanogaster</i> Environmental Health Perspectives, 2016, 124, 1062-1070.	6.0	42
47	Genome-Wide Association Analysis of Tolerance to Methylmercury Toxicity in Drosophila Implicates Myogenic and Neuromuscular Developmental Pathways. PLoS ONE, 2014, 9, e110375.	2.5	42
48	Overexpression of Myocilin in the Drosophila Eye Activates the Unfolded Protein Response: Implications for Glaucoma. PLoS ONE, 2009, 4, e4216.	2.5	41
49	Genetic modules and networks for behavior: lessons fromDrosophila. BioEssays, 2004, 26, 1299-1306.	2.5	40
50	Transcriptional and epigenetic responses to mating and aging in Drosophila melanogaster. BMC Genomics, 2014, 15, 927.	2.8	38
51	Epistatic interactions attenuate mutations affecting startle behaviour in <i>Drosophila melanogaster</i>). Genetical Research, 2009, 91, 373-382.	0.9	37
52	Natural Variation in Odorant Recognition Among Odorant-Binding Proteins in <i>Drosophila melanogaster</i> . Genetics, 2010, 184, 759-767.	2.9	35
53	Evolution of Reproductive Behavior. Genetics, 2020, 214, 49-73.	2.9	35
54	<i>Obp56h</i> Modulates Mating Behavior in <i>Drosophila melanogaster</i> Genes, Genes, Genomes, Genetics, 2016, 6, 3335-3342.	1.8	34

#	Article	IF	CITATIONS
55	The Soluble Proteome of the Drosophila Antenna. Chemical Senses, 2010, 35, 21-30.	2.0	33
56	Pleiotropic Effects of Drosophila <i>neuralized</i> on Complex Behaviors and Brain Structure. Genetics, 2008, 179, 1327-1336.	2.9	32
57	The genetic architecture of odor-guided behavior in Drosophila melanogaster. , 2001, 31, 17-27.		31
58	Genotype by environment interaction for gene expression in Drosophila melanogaster. Nature Communications, 2020, 11, 5451.	12.8	30
59	Olfactomedin-2 mediates development of the anterior central nervous system and head structures in zebrafish. Mechanisms of Development, 2008, 125, 167-181.	1.7	29
60	Pleiotropic fitness effects of the Tre1-Gr5a region in Drosophila melanogaster. Nature Genetics, 2006, 38, 824-829.	21.4	27
61	Transcriptional Networks for Alcohol Sensitivity in <i>Drosophila melanogaster</i> . Genetics, 2011, 187, 1193-1205.	2.9	27
62	Chemosensation and Evolution of Drosophila Host Plant Selection. IScience, 2020, 23, 100799.	4.1	27
63	Scribble Is Essential for Olfactory Behavior in Drosophila melanogaster. Genetics, 2003, 164, 1447-1457.	2.9	27
64	Extensive epistasis for olfactory behaviour, sleep and waking activity in (i>Drosophila melanogaster (i). Genetical Research, 2012, 94, 9-20.	0.9	26
65	The road less traveled: from genotype to phenotype in flies and humans. Mammalian Genome, 2018, 29, 5-23.	2.2	26
66	Variation in genetic architecture of olfactory behaviour among wildâ€derived populations of <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2008, 21, 988-996.	1.7	25
67	Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior. Genes, Brain and Behavior, 2016, 15, 280-290.	2.2	25
68	The <i>Drosophila</i> brain on cocaine at single-cell resolution. Genome Research, 2021, 31, 1927-1937.	5.5	23
69	Transcription Profiling in Drosophila Eyes That Overexpress the Human Glaucoma-Associated Trabecular Meshwork-Inducible Glucocorticoid Response Protein/Myocilin (TIGR/MYOC). Genetics, 2003, 163, 637-645.	2.9	23
70	Pinocchio, a novel protein expressed in the antenna, contributes to olfactory behavior in Drosophila melanogaster. Journal of Neurobiology, 2005, 63, 146-158.	3.6	22
71	Genetics of cocaine and methamphetamine consumption and preference in Drosophila melanogaster. PLoS Genetics, 2019, 15, e1007834.	3.5	21
72	The Early Developmental Gene Semaphorin 5c Contributes to Olfactory Behavior in Adult Drosophila. Genetics, 2007, 176, 947-956.	2.9	18

#	Article	IF	CITATIONS
73	Systems genetics of the <i>Drosophila</i> metabolome. Genome Research, 2020, 30, 392-405.	5.5	18
74	Genetics of alcohol consumption in <i>Drosophila melanogaster</i> . Genes, Brain and Behavior, 2017, 16, 675-685.	2.2	17
75	Evolution of Olfactomedin: Structural Constraints and Conservation of Primary Sequence Motifs. Annals of the New York Academy of Sciences, 1998, 855, 294-300.	3.8	16
76	Pheromone Regulated Production of Inositol-(1, 4, 5)-Trisphosphate in the Mammalian Vomeronasal Organ. Endocrinology, 1997, 138, 3497-3504.	2.8	16
77	Genes of the Unfolded Protein Response Pathway Harbor Risk Alleles for Primary Open Angle Glaucoma. PLoS ONE, 2011, 6, e20649.	2.5	15
78	A <i>Cyclin E</i> Centered Genetic Network Contributes to Alcohol-Induced Variation in Drosophila Development. G3: Genes, Genomes, Genetics, 2018, 8, 2643-2653.	1.8	14
79	Evolution of Epistatic Networks and the Genetic Basis of Innate Behaviors. Trends in Genetics, 2020, 36, 24-29.	6.7	13
80	Developmental Alcohol Exposure in Drosophila: Effects on Adult Phenotypes and Gene Expression in the Brain. Frontiers in Psychiatry, 2021, 12, 699033.	2.6	13
81	Genetic basis of variation in cocaine and methamphetamine consumption in outbred populations of $\langle i \rangle$ Drosophila melanogaster $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
82	Functional Diversification, Redundancy, and Epistasis among Paralogs of the <i>Drosophila melanogaster Obp50a–d</i> Gene Cluster. Molecular Biology and Evolution, 2021, 38, 2030-2044.	8.9	11
83	Physiological and metabolomic consequences of reduced expression of the Drosophila brummer triglyceride Lipase. PLoS ONE, 2021, 16, e0255198.	2.5	11
84	Ibrutinib as a potential therapeutic for cocaine use disorder. Translational Psychiatry, 2021, 11, 623.	4.8	7
85	Dissecting the genetic architecture of behavior in Drosophila melanogaster. Current Opinion in Behavioral Sciences, 2015, 2, 1-7.	3.9	6
86	Regulation of Drosophila Lifespan by bellwether Promoter Alleles. Scientific Reports, 2017, 7, 4109.	3.3	6
87	High-Throughput Method for Measuring Alcohol Sedation Time of Individual Drosophila melanogaster . Journal of Visualized Experiments, 2020, , .	0.3	5
88	Modulation of the Drosophila transcriptome by developmental exposure to alcohol. BMC Genomics, 2022, 23, 347.	2.8	5
89	Making scents of behavioural genetics: lessons from <i>Drosophila</i> . Genetical Research, 2010, 92, 349-359.	0.9	4
90	Tuning the chemosensory window. Fly, 2010, 4, 230-235.	1.7	4

ROBERT R H ANHOLT

#	Article	IF	CITATIONS
91	Epistasis for head morphology in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	2
92	A High Throughput Microplate Feeder Assay for Quantification of Consumption in Drosophila . Journal of Visualized Experiments, 2021, , .	0.3	1
93	Olfaction in Drosophila: from Receptors to Behavior. Chemical Senses, 2001, 26, 193-193.	2.0	O