
## Zdravko Baruch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10511694/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Increased plant species richness associates with greater soil bacterial diversity in urban green spaces.<br>Environmental Research, 2021, 196, 110425.                                                    | 7.5  | 28        |
| 2  | TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.                                                                                                   | 9.5  | 1,038     |
| 3  | Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecology, 2020, 47, 100939.                                                       | 1.6  | 20        |
| 4  | Floristic and structural assessment of Australian rangeland vegetation with standardized plot-based surveys. PLoS ONE, 2018, 13, e0202073.                                                                | 2.5  | 11        |
| 5  | Functional acclimation across microgeographic scales in Dodonaea viscosa. AoB PLANTS, 2018, 10, ply029.                                                                                                   | 2.3  | 3         |
| 6  | Leaf trait associations with environmental variation in the wideâ€ranging shrub <i>Dodonaea<br/>viscosa</i> subsp. <i>angustissima</i> (Sapindaceae). Austral Ecology, 2017, 42, 553-561.                 | 1.5  | 24        |
| 7  | Opportunities for Integrated Ecological Analysis across Inland Australia with Standardised Data from Ausplots Rangelands. PLoS ONE, 2017, 12, e0170137.                                                   | 2.5  | 30        |
| 8  | Identifying Centres of Plant Biodiversity in South Australia. PLoS ONE, 2016, 11, e0144779.                                                                                                               | 2.5  | 40        |
| 9  | Global change community ecology beyond speciesâ€sorting: a quantitative framework based on<br>mediterraneanâ€biome examples. Global Ecology and Biogeography, 2014, 23, 1062-1072.                        | 5.8  | 8         |
| 10 | Plant invasions research in Latin America: fast track to a more focused agenda. Plant Ecology and Diversity, 2012, 5, 225-232.                                                                            | 2.4  | 17        |
| 11 | Leaf trait variation of a dominant neotropical savanna tree across rainfall and fertility gradients.<br>Acta Oecologica, 2011, 37, 455-461.                                                               | 1.1  | 18        |
| 12 | Ecophysiology of the invader Pennisetum setaceum and three native grasses in the Canary Islands. Acta<br>Oecologica, 2010, 36, 248-254.                                                                   | 1.1  | 18        |
| 13 | Leaf trait relationships of native and invasive plants: community―and globalâ€scale comparisons. New<br>Phytologist, 2007, 176, 635-643.                                                                  | 7.3  | 368       |
| 14 | Responses of tropical native and invader C4 grasses to water stress, clipping and increased atmospheric CO2 concentration. Oecologia, 2005, 145, 522-532.                                                 | 2.0  | 35        |
| 15 | Vegetation–environment relationships and classification of the seasonal savannas in Venezuela.<br>Flora: Morphology, Distribution, Functional Ecology of Plants, 2005, 200, 49-64.                        | 1.2  | 41        |
| 16 | Quantitative trait, genetic, environmental, and geographical distances among populations of the C4<br>grass Trachypogon plumosus in Neotropical savannas. Diversity and Distributions, 2004, 10, 283-292. | 4.1  | 18        |
| 17 | The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.                                                                                                                                        | 27.8 | 6,489     |
| 18 | Responses to drought of five Brachiaria species. II. Water relations and leaf gas exchange. Plant and<br>Soil, 2004, 258, 249-260.                                                                        | 3.7  | 24        |

Zdravko Baruch

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Title is missing!. Plant and Soil, 2002, 243, 229-241.                                                                                                                      | 3.7 | 87        |
| 20 | African Grass Invasion in the Americas: Ecosystem Consequences and the Role of Ecophysiology. , 2000, 2, 123-140.                                                           |     | 249       |
| 21 | Effects of fire and defoliation on the life history of native and invader C 4 grasses in a Neotropical savanna. Oecologia, 1999, 119, 510-520.                              | 2.0 | 44        |
| 22 | Soil Depth and Fertility Effects on Biomass and Nutrient Allocation in Jaraguagrass. Journal of Range<br>Management, 1997, 50, 268.                                         | 0.3 | 14        |
| 23 | Ecophysiological Aspects of the Invasion by African Grasses and Their Impact on Biodiversity and Function of Neotropical Savannas. Ecological Studies, 1996, , 79-93.       | 1.2 | 25        |
| 24 | Dynamics of energy and nutrient concentration and construction cost in a native and two alien C4 grasses from two neotropical savannas. Plant and Soil, 1996, 181, 175-184. | 3.7 | 41        |
| 25 | Biodiversity As Regulator of Energy Flow, Water Use and Nutrient Cycling in Savannas. Ecological<br>Studies, 1996, , 175-194.                                               | 1.2 | 5         |
| 26 | Effects of Drought and Flooding on Root Anatomy in Four Tropical Forage Grasses. International<br>Journal of Plant Sciences, 1995, 156, 514-521.                            | 1.3 | 44        |
| 27 | Responses to drought and flooding in tropical forage grasses. Plant and Soil, 1994, 164, 87-96.                                                                             | 3.7 | 74        |
| 28 | Responses to drought and flooding in tropical forage grasses. Plant and Soil, 1994, 164, 97-105.                                                                            | 3.7 | 48        |
| 29 | Water relations of native and introduced C4 grasses in a neotropical savanna. Oecologia, 1993, 96, 179-185.                                                                 | 2.0 | 53        |
| 30 | Responses to simulated herbivory and water stress in two tropical C4 grasses. Oecologia, 1991, 88, 173-180.                                                                 | 2.0 | 73        |
| 31 | Patterns of energy content in plants from the venezuelan paramos. Oecologia, 1982, 55, 47-52.                                                                               | 2.0 | 15        |
| 32 | Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae)<br>in the Venezuelan Andes. Oecologia, 1979, 38, 71-82.                | 2.0 | 27        |
| 33 | Elevation Differentiation in Espeletia Schultzii (Compositae), A Giant Rosette Plant of the Venezuelan<br>Paramos. Ecology, 1979, 60, 85-98.                                | 3.2 | 48        |