Frank Dieterle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10511495/publications.pdf Version: 2024-02-01

FDANK DIFTEDLE

#	Article	IF	CITATIONS
1	NMR and MS Methods for Metabolomics. Methods in Molecular Biology, 2017, 1641, 229-258.	0.9	59
2	NMR and MS Methods for Metabonomics. Methods in Molecular Biology, 2011, 691, 385-415.	0.9	77
3	Cross-study and cross-omics comparisons of three nephrotoxic compounds reveal mechanistic insights and new candidate biomarkers. Toxicology and Applied Pharmacology, 2011, 252, 112-122.	2.8	37
4	Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nature Biotechnology, 2010, 28, 463-469.	17.5	293
5	Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nature Biotechnology, 2010, 28, 455-462.	17.5	355
6	A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nature Biotechnology, 2010, 28, 486-494.	17.5	189
7	Towards consensus practices to qualify safety biomarkers for use in early drug development. Nature Biotechnology, 2010, 28, 446-454.	17.5	113
8	Next-generation biomarkers for detecting kidney toxicity. Nature Biotechnology, 2010, 28, 436-440.	17.5	454
9	Performance of Novel Kidney Biomarkers in Preclinical Toxicity Studies. Toxicological Sciences, 2010, 116, 8-22.	3.1	101
10	Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nature Biotechnology, 2010, 28, 478-485.	17.5	552
11	Tissue-specific, non-invasive toxicity biomarkers: translation from preclinical safety assessment to clinical safety monitoring. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 1023-1038.	3.3	53
12	New technologies around biomarkers and their interplay with drug development. Analytical and Bioanalytical Chemistry, 2008, 390, 141-154.	3.7	23
13	Biomarkers in oncology drug development: rescuers or troublemakers?. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 1391-1402.	3.3	16
14	Monitoring kidney safety in drug development: emerging technologies and their implications. Current Opinion in Drug Discovery & Development, 2008, 11, 60-71.	1.9	21
15	NMR Spectroscopy Techniques for Application to Metabonomics. , 2007, , 55-112.		20
16	Application of Metabonomics in a Comparative Profiling Study Reveals N-Acetylfelinine Excretion as a Biomarker for Inhibition of the Farnesyl Pathway by Bisphosphonates. Chemical Research in Toxicology, 2007, 20, 1291-1299.	3.3	24
17	Promises of Biomarkers in Drug Development ? A Reality Check. Chemical Biology and Drug Design, 2007, 69, 381-394.	3.2	49
18	Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in1H NMR Metabonomics. Analytical Chemistry, 2006, 78, 4281-4290.	6.5	1,486

FRANK DIETERLE

#	Article	IF	CITATIONS
19	Application of Metabonomics in a Compound Ranking Study in Early Drug Development Revealing Drug-Induced Excretion of Choline into Urine. Chemical Research in Toxicology, 2006, 19, 1175-1181.	3.3	38
20	Metabolite Projection Analysis for Fast Identification of Metabolites in Metabonomics. Application in an Amiodarone Study. Analytical Chemistry, 2006, 78, 3551-3561.	6.5	51
21	Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics, 2006, 7, 1055-1075.	1.3	80
22	Quantification of Quaternary Mixtures of Low Alcohols in Water:Â Temporal-Resolved Measurements with Microporous and Hyperbranched Polymer Sensors for Reduction of Sensor Number. Analytical Chemistry, 2005, 77, 5542-5550.	6.5	32
23	Quantification of quaternary mixtures of alcohols: a comparison of reflectometric interference spectroscopy and surface plasmon resonance spectroscopy. Measurement Science and Technology, 2004, 15, 540-548.	2.6	9
24	Time-resolved sensor arrays. Analytical and Bioanalytical Chemistry, 2004, 378, 66-67.	3.7	0
25	Different approaches to multivariate calibration of nonlinear sensor data. Analytical and Bioanalytical Chemistry, 2004, 380, 383-396.	3.7	19
26	Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements. Analytica Chimica Acta, 2003, 490, 71-83.	5.4	42
27	Genetic algorithms and neural networks for the quantitative analysis of ternary mixtures using surface plasmon resonance. Chemometrics and Intelligent Laboratory Systems, 2003, 65, 67-81.	3.5	19
28	Discrimination of Methanol and Ethanol Vapors by the Use of a Single Optical Sensor with a Microporous Sensitive Layer. Analytical Chemistry, 2002, 74, 4781-4787.	6.5	29