Thomas Eltz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10510585/publications.pdf

Version: 2024-02-01

218677 265206 1,972 42 49 26 h-index citations g-index papers 50 50 50 1784 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Asynchronous Diversification in a Specialized Plant-Pollinator Mutualism. Science, 2011, 333, 1742-1746.	12.6	144
2	Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodiversity and Conservation, 2010, 19, 519-529.	2.6	104
3	Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia. Oecologia, 2002, 131, 27-34.	2.0	95
4	Juggling with volatiles: exposure of perfumes by displaying male orchid bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 575-581.	1.6	95
5	Title is missing!. Biodiversity and Conservation, 2003, 12, 1371-1389.	2.6	94
6	Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, with implications for forest management. Forest Ecology and Management, 2003, 172, 301-313.	3.2	86
7	Experience-dependent choices ensure species-specific fragrance accumulation in male orchid bees. Behavioral Ecology and Sociobiology, 2005, 59, 149-156.	1.4	74
8	Chemical niche differentiation among sympatric species of orchid bees. Ecology, 2009, 90, 2994-3008.	3.2	70
9	Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie, 2015, 46, 224-237.	2.0	67
10	How landscape, pollen intake and pollen quality affect colony growth in Bombus terrestris. Landscape Ecology, 2016, 31, 2245-2258.	4.2	63
11	Fragrances, male display and mating behaviour of Euglossa hemichlora: a flight cage experiment. Physiological Entomology, 2003, 28, 251-260.	1.5	62
12	Macroevolution of perfume signalling in orchid bees. Ecology Letters, 2016, 19, 1314-1323.	6.4	61
13	Species-specific attraction to pheromonal analogues in orchid bees. Behavioral Ecology and Sociobiology, 2006, 60, 833-843.	1.4	60
14	Foraging scent marks of bumblebees: footprint cues rather than pheromone signals. Die Naturwissenschaften, 2008, 95, 149-153.	1.6	58
15	Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae:) Tj ETQq1 1 0	.784314 r	gBT /Overloc
16	Tracing Pollinator Footprints on Natural Flowers. Journal of Chemical Ecology, 2006, 32, 907-915.	1.8	54
17	Enfleurage, lipid recycling and the origin of perfume collection in orchid bees. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2843-2848.	2.6	54
18	An Olfactory Shift Is Associated with Male Perfume Differentiation and Species Divergence in Orchid Bees. Current Biology, 2008, 18, 1844-1848.	3.9	52

#	Article	IF	CITATIONS
19	Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zoological Journal of the Linnean Society, 2011, 163, 1064-1076.	2.3	48
20	Foraging loads of stingless bees and utilisation of stored nectar for pollen harvesting. Apidologie, 2007, 38, 125-135.	2.0	46
21	Foraging in the ant-lionMyrmeleon mobilis hagen 1888 (neuroptera: Myrmeleontidae): Behavioral flexibility of a sit-and-wait predator. Journal of Insect Behavior, 1997, 10, 1-11.	0.7	43
22	Repellent foraging scent recognition across bee families. Apidologie, 2005, 36, 325-330.	2.0	43
23	The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nature Communications, 2020, 11 , 244 .	12.8	35
24	Species-Specific Antennal Responses to Tibial Fragrances by Male Orchid Bees. Journal of Chemical Ecology, 2006, 32, 71-79.	1.8	32
25	Hydrocarbon Footprints as a Record of Bumblebee Flower Visitation. Journal of Chemical Ecology, 2009, 35, 1320-1325.	1.8	31
26	Influence of scent deposits on flower choice: experiments in an artificial flower array with bumblebees. Apidologie, 2007, 38, 12-18.	2.0	29
27	Intraspecific Geographic Variation of Fragrances Acquired by Orchid Bees in Native and Introduced Populations. Journal of Chemical Ecology, 2010, 36, 873-884.	1.8	28
28	CONSERVATION GENETICS OF NEOTROPICAL POLLINATORS REVISITED: MICROSATELLITE ANALYSIS SUGGESTS THAT DIPLOID MALES ARE RARE IN ORCHID BEES. Evolution; International Journal of Organic Evolution, 2010, 64, 3318-3326.	2.3	26
29	Antennal response to fragrance compounds in male orchid bees. Chemoecology, 2005, 15, 135-138.	1.1	24
30	Cuticular hydrocarbons distinguish cryptic sibling species in Euglossa orchid bees. Apidologie, 2014, 45, 276-283.	2.0	24
31	Blown by the wind: the ecology of male courtship display behavior in orchid bees. Ecology, 2017, 98, 1140-1152.	3.2	24
32	Pollen diets of two sibling orchid bee species, Euglossa, in Yucatán, southern Mexico. Apidologie, 2013, 44, 440-446.	2.0	21
33	Assessing stingless bee pollen diet by analysis of garbage pellets: a new method. Apidologie, 2001, 32, 341-353.	2.0	19
34	Spatio-temporal variation of apine bee attraction to honeybaits in Bornean forests. Journal of Tropical Ecology, 2004, 20, 317-324.	1.1	18
35	(6R, 10R)-6,10,14-Trimethylpentadecan-2-one, a Dominant and Behaviorally Active Component in Male Orchid Bee Fragrances. Journal of Chemical Ecology, 2010, 36, 1322-1326.	1.8	18
36	Olfactory specialization for perfume collection in male orchid bees. Journal of Experimental Biology, 2016, 219, 1467-1475.	1.7	16

#	Article	IF	CITATIONS
37	Enantioselective Preference and High Antennal Sensitivity for (â^')-lpsdienol in Scent-Collecting Male Orchid Bees, Euglossa cyanura. Journal of Chemical Ecology, 2011, 37, 953-960.	1.8	12
38	Raising the Sugar Content – Orchid Bees Overcome the Constraints of Suction Feeding through Manipulation of Nectar and Pollen Provisions. PLoS ONE, 2014, 9, e113823.	2.5	12
39	Plant secretions prevent wasp parasitism in nests of wool-carder bees, with implications for the diversification of nesting materials in Megachilidae. Frontiers in Ecology and Evolution, 2015, 2, .	2.2	11
40	The sound of a blood meal: Acoustic ecology of frogâ€biting midges (Corethrella) in lowland Pacific Costa Rica. Ethology, 2019, 125, 465-475.	1.1	11
41	Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers. Oecologia, 2011, 165, 1017-1029.	2.0	9
42	Cuticular Hydrocarbons as Potential Close Range Recognition Cues in Orchid Bees. Journal of Chemical Ecology, 2015, 41, 1080-1094.	1.8	9
43	Evaluating the effects of floral resource specialisation and of nitrogen regulation on the vulnerability of social bees in agricultural landscapes. Apidologie, 2017, 48, 371-383.	2.0	7
44	â€~Late' male sperm precedence in polyandrous wool-carder bees and the evolution of male resource defence in Hymenoptera. Animal Behaviour, 2014, 90, 211-217.	1.9	6
45	Social Behavior, Ovary Size, and Population of Origin Influence Cuticular Hydrocarbons in the Orchid Bee <i>Euglossa dilemma</i> American Naturalist, 2021, 198, E136-E151.	2.1	6
46	More than meets the eye: decrypting diversity reveals hidden interaction specificity between frogs and frogâ€biting midges. Ecological Entomology, 2022, 47, 95-108.	2.2	6
47	Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers. Oecologia, 2011, 166, 161-174.	2.0	5
48	6-(4-Methylpent-3-en-1-yl)naphthalene-1,4-dione, a behaviorally active semivolatile in tibial perfumes of orchid bees. Chemoecology, 2018, 28, 131-135.	1.1	2
49	Bumblebee footprints on bird's-foot trefoil uncover increasing flower visitation with land-use intensity. Agriculture, Ecosystems and Environment, 2017, 240, 77-83.	5.3	0