Nicholas Komar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10510004/publications.pdf

Version: 2024-02-01

71061 49868 8,030 114 41 87 citations h-index g-index papers 114 114 114 4090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Host selection pattern and flavivirus screening of mosquitoes in a disturbed Colombian rainforest. Scientific Reports, 2021, 11, 18656.	1.6	5
2	Use of Mosquitoes to Indirectly Assess West Nile Virus Activity among Colonial Waterbirds. Waterbirds, 2020, 43, .	0.2	0
3	Bloodmeal Host Selection of Culex quinquefasciatus (Diptera: Culicidae) in Las Vegas, Nevada, United States. Journal of Medical Entomology, 2019, 56, 603-608.	0.9	12
4	Zika Virus Surveillance at the Human–Animal Interface in West-Central Brazil, 2017–2018. Viruses, 2019, 11, 1164.	1.5	14
5	DETERMINING RAPTOR SPECIES AND TISSUE SENSITIVITY FOR IMPROVED WEST NILE VIRUS SURVEILLANCE. Journal of Wildlife Diseases, 2018, 54, 528-533.	0.3	5
6	Focal amplification and suppression of West Nile virus transmission associated with communal bird roosts in northern Colorado. Journal of Vector Ecology, 2018, 43, 220-234.	0.5	8
7	Flanders hapavirus in western North America. Archives of Virology, 2018, 163, 3351-3356.	0.9	0
8	Forage Ratio Analysis of the Southern House Mosquito in College Station, Texas. Vector-Borne and Zoonotic Diseases, 2018, 18, 485-490.	0.6	7
9	Neutralizing antibodies for orthobunyaviruses in Pantanal, Brazil. PLoS Neglected Tropical Diseases, 2017, 11, e0006014.	1.3	13
10	Activity Patterns of St. Louis Encephalitis and West Nile Viruses in Free Ranging Birds during a Human Encephalitis Outbreak in Argentina. PLoS ONE, 2016, 11, e0161871.	1.1	19
11	Novel Viruses Isolated from Mosquitoes in Pantanal, Brazil. Genome Announcements, 2016, 4, .	0.8	18
12	Neutralising antibodies for Mayaro virus in Pantanal, Brazil. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 125-133.	0.8	44
13	Heartland Virus Neutralizing Antibodies in Vertebrate Wildlife, United States, 2009–2014. Emerging Infectious Diseases, 2015, 21, 1830-1833.	2.0	46
14	Reduced West Nile Virus Transmission Around Communal Roosts of Great-Tailed Grackle (Quiscalus) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf !
15	Nhumirim virus, a novel flavivirus isolated from mosquitoes from the Pantanal, Brazil. Archives of Virology, 2015, 160, 21-27.	0.9	38
16	Serological Investigation of Heartland Virus (Bunyaviridae: Phlebovirus) Exposure in Wild and Domestic Animals Adjacent to Human Case Sites in Missouri 2012–2013. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1163-1167.	0.6	47
17	Methods for Detection of West Nile Virus Antibodies in Mosquito Blood Meals. Journal of the American Mosquito Control Association, 2015, 31, 1-6.	0.2	13
18	Serological Evidence of Widespread Circulation of West Nile Virus and Other Flaviviruses in Equines of the Pantanal, Brazil. PLoS Neglected Tropical Diseases, 2014, 8, e2706.	1.3	65

#	Article	IF	CITATIONS
19	Mosquitoes Used to Draw Blood for Arbovirus Viremia Determinations in Small Vertebrates. PLoS ONE, 2014, 9, e99342.	1.1	17
20	Experimental infection of Eurasian collared-dove (<i>Streptopelia decaocto</i>) with West Nile virus. Journal of Vector Ecology, 2013, 38, 210-214.	0.5	20
21	West Nile Virus Ecology in a Tropical Ecosystem in Guatemala. American Journal of Tropical Medicine and Hygiene, 2013, 88, 116-126.	0.6	28
22	Ilheus Virus Isolation in the Pantanal, West-Central Brazil. PLoS Neglected Tropical Diseases, 2013, 7, e2318.	1.3	47
23	Avian Hosts of West Nile Virus in Arizona. American Journal of Tropical Medicine and Hygiene, 2013, 89, 474-481.	0.6	19
24	Host Selection of Potential West Nile Virus Vectors in Puerto Barrios, Guatemala, 2007. American Journal of Tropical Medicine and Hygiene, 2013, 88, 108-115.	0.6	12
25	Vector Contact Rates on Eastern Bluebird Nestlings Do Not Indicate West Nile Virus Transmission in Henrico County, Virginia, USA. International Journal of Environmental Research and Public Health, 2013, 10, 6366-6379.	1.2	4
26	Avian Hosts of West Nile Virus in Puerto Rico. Vector-Borne and Zoonotic Diseases, 2012, 12, 47-54.	0.6	13
27	Serological detection of West Nile virus in horses and chicken from Pantanal, Brazil. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 1073-1075.	0.8	28
28	The Centers for Disease Control and Prevention Resting Trap: A Novel Device for Collecting Resting Mosquitoes. Journal of the American Mosquito Control Association, 2011, 27, 323-325.	0.2	25
29	West Nile Virus Infection of Birds, Mexico. Emerging Infectious Diseases, 2011, 17, 2245-2252.	2.0	28
30	Mosquito (Diptera: Culicidae) Bloodmeal Sources During a Period of West Nile Virus Transmission in Puerto Rico. Journal of Medical Entomology, 2011, 48, 701-704.	0.9	13
31	An enzootic vector-borne virus is amplified at epizootic levels by an invasive avian host. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 239-246.	1.2	32
32	Seroconversion for west Nile and St. Louis encephalitis viruses among sentinel horses in Colombia. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 976-979.	0.8	17
33	Persistence of Buggy Creek Virus (Togaviridae,Alphavirus) for Two Years in Unfed Swallow Bugs (Hemiptera: Cimicidae:Oeciacus vicarius) : Table 1. Journal of Medical Entomology, 2010, 47, 436-441.	0.9	7
34	Natural infection of vertebrate hosts by different lineages of Buggy Creek virus (family Togaviridae,) Tj ETQq0 0	0 rgBJ /Ov	verlock 10 Tf 5
35	Hydrologic Conditions Describe West Nile Virus Risk in Colorado. International Journal of Environmental Research and Public Health, 2010, 7, 494-508.	1.2	43
36	Winter Ecology of Buggy Creek Virus (Togaviridae, <i>Alphavirus </i>) in the Central Great Plains. Vector-Borne and Zoonotic Diseases, 2010, 10, 355-363.	0.6	21

#	Article	IF	CITATIONS
37	Persistence of Buggy Creek Virus (<l>Togaviridae</l> , <l>Alphavirus</l>) for Two Years in Unfed Swallow Bugs (Hemiptera: Cimicidae: <l>Oeciacus vicarius</l>). Journal of Medical Entomology, 2010, 47, 436-441.	0.9	15
38	Surveillance for West Nile Virus in American White Pelicans, Montana, USA, 2006–2007. Emerging Infectious Diseases, 2010, 16, 406-411.	2.0	19
39	Detection of West Nile Virus in Stable Flies (Diptera: Muscidae) Parasitizing Juvenile American White Pelicans. Journal of Medical Entomology, 2010, 47, 1205-1211.	0.9	29
40	Comparison of Engorged Culex quinquefasciatus Collection and Blood-Feeding Pattern among Four Mosquito Collection Methods in Puerto Barrios, Guatemala, 2007. Journal of the American Mosquito Control Association, 2010, 26, 332-336.	0.2	9
41	Clinical Evaluation and Outcomes of Naturally Acquired West Nile Virus Infection in Raptors. Journal of Zoo and Wildlife Medicine, 2009, 40, 51-63.	0.3	34
42	Use of a Surrogate Chimeric Virus To Detect West Nile Virus-Neutralizing Antibodies in Avian and Equine Sera. Vaccine Journal, 2009, 16, 134-135.	3.2	14
43	Overwintering of Infectious Buggy Creek Virus (Togaviridae: Alphavirus) inOeciacus vicarius(Hemiptera: Cimicidae) in North Dakota : Table 1. Journal of Medical Entomology, 2009, 46, 391-394.	0.9	16
44	Isolation of Buggy Creek Virus (Togaviridae: Alphavirus) From Field-Collected Eggs of <i>Oeciacus vicarius</i> (Hemiptera: Cimicidae). Journal of Medical Entomology, 2009, 46, 375-379.	0.9	18
45	<i>West Nile Virus</i> Detection in Nonvascular Feathers from Avian Carcasses. Journal of Veterinary Diagnostic Investigation, 2009, 21, 616-622.	0.5	22
46	Persistent West Nile virus infection in the house sparrow (Passer domesticus). Archives of Virology, 2009, 154, 783-789.	0.9	81
47	West Nile Virus Activity in Mosquitoes and Domestic Animals in Chiapas, México. Vector-Borne and Zoonotic Diseases, 2009, 9, 555-560.	0.6	25
48	Seasonal Blood-Feeding Behavior of <i>Culex tarsalis</i> (Diptera: Culicidae) in Weld County, Colorado, 2007. Journal of Medical Entomology, 2009, 46, 380-390.	0.9	127
49	Ecological divergence of two sympatric lineages of Buggy Creek virus, an arbovirus associated with birds. Ecology, 2009, 90, 3168-3179.	1.5	15
50	Naturally Induced Humoral Immunity to West Nile Virus Infection in Raptors. EcoHealth, 2008, 5, 298-304.	0.9	34
51	Host and vector movement affects genetic diversity and spatial structure of Buggy Creek virus (Togaviridae). Molecular Ecology, 2008, 17, 2164-2173.	2.0	21
52	EXPERIMENTAL INOCULATION OF HOUSE SPARROWS (PASSER DOMESTICUS) WITH BUGGY CREEK VIRUS. Journal of Wildlife Diseases, 2008, 44, 331-340.	0.3	18
53	West Nile Virus in Birds, Argentina. Emerging Infectious Diseases, 2008, 14, 689-691.	2.0	89
54	Avian Influenza Virus (H5N1) Mortality Surveillance. Emerging Infectious Diseases, 2008, 14, 1176-1178.	2.0	40

#	Article	IF	Citations
55	Ecological Correlates of Buggy Creek Virus Infection in <1>Oeciacus vicarius 1 , Southwestern Nebraska, 2004. Journal of Medical Entomology, 2007, 44, 42-49.	0.9	23
56	Bird Movement Predicts Buggy Creek Virus Infection in Insect Vectors. Vector-Borne and Zoonotic Diseases, 2007, 7, 304-314.	0.6	26
57	Ecological Correlates of Buggy Creek Virus Infection in Oeciacus vicarius, Southwestern Nebraska, 2004. Journal of Medical Entomology, 2007, 44, 42-49.	0.9	15
58	Population Estimates for Eurasian Collared-dove in Northeastern Colorado. Wilson Journal of Ornithology, 2007, 119, 471-475.	0.1	6
59	Surveillance for West Nile Virus in Clinic-admitted Raptors, Colorado. Emerging Infectious Diseases, 2007, 13, 305-307.	2.0	32
60	West Nile Virus, Venezuela. Emerging Infectious Diseases, 2007, 13, 651-653.	2.0	72
61	AVIAN MORTALITY SURVEILLANCE FOR WEST NILE VIRUS IN COLORADO. American Journal of Tropical Medicine and Hygiene, 2007, 76, 431-437.	0.6	69
62	Avian mortality surveillance for West Nile virus in Colorado. American Journal of Tropical Medicine and Hygiene, 2007, 76, 431-7.	0.6	30
63	Passive West Nile Virus Antibody Transfer from Maternal Eastern Screech-Owls (Megascops asio) to Progeny. Avian Diseases, 2006, 50, 454-455.	0.4	39
64	Migrating Birds as Dispersal Vehicles for West Nile Virus. EcoHealth, 2006, 3, 79-85.	0.9	101
65	NATURAL AND EXPERIMENTAL WEST NILE VIRUS INFECTION IN FIVE RAPTOR SPECIES. Journal of Wildlife Diseases, 2006, 42, 1-13.	0.3	116
66	Phylogenetic Analysis of Buggy Creek Virus: Evidence for Multiple Clades in the Western Great Plains, United States of America. Applied and Environmental Microbiology, 2006, 72, 6886-6893.	1.4	29
67	West Nile virus activity in Latin America and the Caribbean. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2006, 19, 112-117.	0.6	199
68	Epidemiology and Transmission Dynamics of West Nile Virus Disease. Emerging Infectious Diseases, 2005, 11, 1167-1173.	2.0	713
69	West Nile Virus Antibodies in Colombian Horses. Emerging Infectious Diseases, 2005, 11, 1497-1498.	2.0	97
70	Rapid West Nile Virus Antigen Detection. Emerging Infectious Diseases, 2005, 11, 1633-1635.	2.0	14
71	Sentinel Pigeon Surveillance for West Nile Virus by Using Lard-Can Traps at Differing Elevations and Canopy Cover Classes. Journal of Medical Entomology, 2005, 42, 1039-1044.	0.9	19
72	WEST NILE VIRUS INFECTION IN FARMED AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) IN FLORIDA. Journal of Wildlife Diseases, 2005, 41, 96-106.	0.3	77

#	Article	IF	Citations
73	West Nile Virus Survey of Birds and Mosquitoes in the Dominican Republic. Vector-Borne and Zoonotic Diseases, 2005, 5, 120-126.	0.6	32
74	Serologic Evidence of West Nile Virus Infection in Free-Ranging Mammals, Slidell, Louisiana, 2002. Vector-Borne and Zoonotic Diseases, 2005, 5, 288-292.	0.6	36
75	West Nile Virus Epizootiology in the Southeastern United States, 2001. Vector-Borne and Zoonotic Diseases, 2005, 5, 82-89.	0.6	88
76	Serologic survey of cats and dogs during an epidemic of West Nile virus infection in humans. Journal of the American Veterinary Medical Association, 2005, 226, 1349-1353.	0.2	43
77	Sentinel Pigeon Surveillance for West Nile Virus by Using Lard-Can Traps at Differing Elevations and Canopy Cover Classes. Journal of Medical Entomology, 2005, 42, 1039-1044.	0.9	12
78	AVIAN HOSTS FOR WEST NILE VIRUS IN ST. TAMMANY PARISH, LOUISIANA, 2002. American Journal of Tropical Medicine and Hygiene, 2005, 73, 1031-1037.	0.6	86
79	Variation in virulence of West Nile virus strains for house sparrows (Passer domesticus). American Journal of Tropical Medicine and Hygiene, 2005, 72, 99-102.	0.6	43
80	Avian hosts for West Nile virus in St. Tammany Parish, Louisiana, 2002. American Journal of Tropical Medicine and Hygiene, 2005, 73, 1031-7.	0.6	49
81	Alligators as West Nile Virus Amplifiers. Emerging Infectious Diseases, 2004, 10, 2150-2155.	2.0	134
82	Differential Virulence of West Nile Strains for American Crows. Emerging Infectious Diseases, 2004, 10, 2161-2168.	2.0	183
83	Serologic Evidence of West Nile Virus and St. Louis Encephalitis Virus Infections in White-Tailed Deer (Odocoileus virginianus) from New Jersey, 2001. Vector-Borne and Zoonotic Diseases, 2004, 4, 379-383.	0.6	25
84	West Nile Virus Infection in Free-Ranging Squirrels in Illinois. Journal of Veterinary Diagnostic Investigation, 2004, 16, 186-190.	0.5	43
85	Priority Contribution West Nile virus in the New World: potential impacts on bird species. Bird Conservation International, 2004, 14, 215-232.	0.7	25
86	Serologic Survey of Domestic Animals for Zoonotic Arbovirus Infections in the Lacandón Forest Region of Chiapas, Mexico. Vector-Borne and Zoonotic Diseases, 2003, 3, 3-9.	0.6	39
87	West Nile Virus: Epidemiology and Ecology in North America. Advances in Virus Research, 2003, 61, 185-234.	0.9	355
88	Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus. Emerging Infectious Diseases, 2003, 9, 311-322.	2.0	1,040
89	Epitope-Blocking Enzyme-Linked Immunosorbent Assays for the Detection of Serum Antibodies to West Nile Virus in Multiple Avian Species. Journal of Clinical Microbiology, 2003, 41, 1041-1047.	1.8	133
90	Detection of Anti-West Nile Virus Immunoglobulin M in Chicken Serum by an Enzyme-Linked Immunosorbent Assay. Journal of Clinical Microbiology, 2003, 41, 2002-2007.	1.8	39

#	Article	IF	CITATIONS
91	Serologic Evidence of West Nile Virus Infection in Black Bears (Ursus americanus) from New Jersey. Journal of Wildlife Diseases, 2003, 39, 894-896.	0.3	62
92	Serologic Evidence of West Nile Virus Infection in Horses, Coahuila State, Mexico. Emerging Infectious Diseases, 2003, 9, 853-856.	2.0	107
93	West Nile Virus Transmission in Resident Birds, Dominican Republic. Emerging Infectious Diseases, 2003, 9, 1299-1302.	2.0	114
94	DNA Vaccine for West Nile Virus Infection in Fish Crows (<i>Corvus ossifragus</i>). Emerging Infectious Diseases, 2003, 9, 1077-1081.	2.0	75
95	POOR REPLICATION OF WEST NILE VIRUS (NEW YORK 1999 STRAIN) IN THREE REPTILIAN AND ONE AMPHIBIAN SPECIES. American Journal of Tropical Medicine and Hygiene, 2003, 69, 260-262.	0.6	50
96	HOST-RANGE RESTRICTION OF CHIMERIC YELLOW FEVER-WEST NILE VACCINE IN FISH CROWS (CORVUS) Tj ETQ)q0,0 0 rg	BT_lOverlock
97	Host-range restriction of chimeric yellow fever-West Nile vaccine in fish crows (Corvus ossifragus). American Journal of Tropical Medicine and Hygiene, 2003, 69, 78-80.	0.6	4
98	Poor replication of West Nile virus (New York 1999 strain) in three reptilian and one amphibian species. American Journal of Tropical Medicine and Hygiene, 2003, 69, 260-2.	0.6	15
99	Experimental Infection of Horses with West Nile virus. Emerging Infectious Diseases, 2002, 8, 380-386.	2.0	264
100	Detection of West Nile Virus in Oral and Cloacal Swabs Collected from Bird Carcasses. Emerging Infectious Diseases, 2002, 8, 741-742.	2.0	71
101	Detection of West Nile virus-infected mosquitoes and seropositive juvenile birds in the vicinity of virus-positive dead birds American Journal of Tropical Medicine and Hygiene, 2002, 67, 492-496.	0.6	53
102	Serologic Evidence for West Nile Virus Infection in Birds in Staten Island, New York, After an Outbreak in 2000. Vector-Borne and Zoonotic Diseases, 2001, 1, 191-196.	0.6	61
103	Arbovirus infection increases with group size. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1833-1840.	1.2	74
104	Serologic Evidence for West Nile Virus Infection in Birds in the New York City Vicinity During an Outbreak in 1999. Emerging Infectious Diseases, 2001, 7, 621-623.	2.0	117
105	Exposure of Domestic Mammals to West Nile Virus during an Outbreak of Human Encephalitis, New York City, 1999. Emerging Infectious Diseases, 2001, 7, 736-738.	2.0	43
106	Crow Deaths as a Sentinel Surveillance System for West Nile Virus in the Northeastern United States, 1999. Emerging Infectious Diseases, 2001, 7, 615-620.	2.0	109
107	Experimental Infection of Chickens as Candidate Sentinels for West Nile Virus. Emerging Infectious Diseases, 2001, 7, 726-729.	2.0	94

Comparative West Nile Virus Detection in Organs of Naturally Infected American Crows (<i>Corvus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 2.0

#	ARTICLE	IF	CITATION
109	West Nile Virus Outbreak Among Horses in New York State, 1999 and 2000. Emerging Infectious Diseases, 2001, 7, 745-747.	2.0	66
110	Interrupted Blood-Feeding byCuliseta melanura(Diptera: Culicidae) on European Starlings. Journal of Medical Entomology, 2001, 38, 59-66.	0.9	27
111	West Nile Virus Surveillance using Sentinel Birds. Annals of the New York Academy of Sciences, 2001, 951, 58-73.	1.8	92
112	Rapid Detection of West Nile Virus from Human Clinical Specimens, Field-Collected Mosquitoes, and Avian Samples by a TaqMan Reverse Transcriptase-PCR Assay. Journal of Clinical Microbiology, 2000, 38, 4066-4071.	1.8	976
113	Sensitive and Specific Colorimetric Dot Assay to Detect Eastern Equine Encephalomyelitis Viral RNA in Mosquitoes (Diptera: Culicidae) After Polymerase Chain Reaction Amplification. Journal of Medical Entomology, 1995, 32, 42-52.	0.9	17
114	Emergence of Eastern Encephalitis in Massachusetts. Annals of the New York Academy of Sciences, 1994, 740, 157-168.	1.8	31