Neil Parrott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10509593/publications.pdf

Version: 2024-02-01

35	2,308	24 h-index	35
papers	citations		g-index
38	38	38	1919
all docs	does citations	times ranked	citing authors

#	Article	IF	Citations
1	Evaluation of the Success of High-Throughput Physiologically Based Pharmacokinetic (HT-PBPK) Modeling Predictions to Inform Early Drug Discovery. Molecular Pharmaceutics, 2022, 19, 2203-2216.	4.6	17
2	Understanding Mechanisms of Food Effect and Developing Reliable PBPK Models Using a Middle-out Approach. AAPS Journal, 2021, 23, 12.	4.4	23
3	Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews, 2021, 171, 289-331.	13.7	84
4	PBPK Modeling as a Tool for Predicting and Understanding Intestinal Metabolism of Uridine 5′-Diphospho-glucuronosyltransferase Substrates. Pharmaceutics, 2021, 13, 1325.	4.5	9
5	Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective. AAPS Journal, 2020, 22, 123.	4.4	53
6	Construction and Verification of Physiologically Based Pharmacokinetic Models for Four Drugs Majorly Cleared by Glucuronidation: Lorazepam, Oxazepam, Naloxone, and Zidovudine. AAPS Journal, 2020, 22, 128.	4.4	16
7	Physiologically Based Absorption Modelling to Explore the Impact of Food and Gastric pH Changes on the Pharmacokinetics of Entrectinib. AAPS Journal, 2020, 22, 78.	4.4	35
8	The mechanisms of pharmacokinetic food-drug interactions – A perspective from the UNGAP group. European Journal of Pharmaceutical Sciences, 2019, 134, 31-59.	4.0	224
9	Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: An UNGAP review. European Journal of Pharmaceutical Sciences, 2019, 134, 153-175.	4.0	146
10	Physiologically Based Pharmacokinetic Modelling for First-In-Human Predictions: An Updated Model Building Strategy Illustrated with Challenging Industry Case Studies. Clinical Pharmacokinetics, 2019, 58, 727-746.	3.5	93
11	Investigating Oral Absorption of Carbamazepine in Pediatric Populations. AAPS Journal, 2017, 19, 1864-1877.	4.4	19
12	The great barrier belief: The blood–brain barrier and considerations for juvenile toxicity studies. Reproductive Toxicology, 2017, 72, 129-135.	2.9	28
13	Characterization of Pharmacokinetics in the Göttingen Minipig with Reference Human Drugs: An In Vitro and In Vivo Approach. Pharmaceutical Research, 2016, 33, 2565-2579.	3.5	14
14	Investigating the effect of autoinduction in cynomolgus monkeys of a novel anticancer MDM2 antagonist, idasanutlin, and relevance to humans. Xenobiotica, 2016, 46, 667-676.	1.1	5
15	The role of quantitative ADME proteomics to support construction of physiologically based pharmacokinetic models for use in small molecule drug development. Proteomics - Clinical Applications, 2015, 9, 732-744.	1.6	27
16	Quantitative ADME Proteomics – CYP and UGT Enzymes in the Beagle Dog Liver and Intestine. Pharmaceutical Research, 2015, 32, 74-90.	3. 5	47
17	Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: Influence of time between substrate and inducer administration. European Journal of Pharmaceutical Sciences, 2014, 56, 1-15.	4.0	65
18	Applications of a 7-day Caco-2 cell model in drug discovery and development. European Journal of Pharmaceutical Sciences, 2014, 56, 120-130.	4.0	38

#	Article	IF	CITATIONS
19	Physiologically Based Absorption Modelling to Predict the Impact of Drug Properties on Pharmacokinetics of Bitopertin. AAPS Journal, 2014, 16, 1077-1084.	4.4	29
20	Pharmacokinetics of Paracetamol in $G\tilde{A}^{q}$ ttingen Minipigs: In Vivo Studies and Modeling to Elucidate Physiological Determinants of Absorption. Pharmaceutical Research, 2014, 31, 2696-2707.	3.5	28
21	A Physiologically Based Pharmacokinetic Model of the Minipig: Data Compilation and Model Implementation. Pharmaceutical Research, 2013, 30, 1-15.	3 . 5	75
22	In Vitro to in Vivo Extrapolation and Physiologically Based Modeling of Cytochrome P450 Mediated Metabolism in Beagle Dog Gut Wall and Liver. Molecular Pharmaceutics, 2013, 10, 1388-1399.	4.6	19
23	Physiologically Based Pharmacokinetic Modelling to Predict Single- and Multiple-Dose Human Pharmacokinetics of Bitopertin. Clinical Pharmacokinetics, 2013, 52, 673-683.	3.5	14
24	Application of PBPK modeling to predict human intestinal metabolism of CYP3A substrates – An evaluation and case study using GastroPlusâ,,¢. European Journal of Pharmaceutical Sciences, 2012, 47, 375-386.	4.0	63
25	Use of physiologically based pharmacokinetic modeling for assessment of drug–drug interactions. Future Medicinal Chemistry, 2012, 4, 681-693.	2.3	10
26	Mass Spectrometry-Based Quantification of CYP Enzymes to Establish In Vitro/In Vivo Scaling Factors for Intestinal and Hepatic Metabolism in Beagle Dog. Pharmaceutical Research, 2012, 29, 1832-1842.	3 . 5	29
27	Development of a Physiologically Based Model for Oseltamivir and Simulation of Pharmacokinetics in Neonates and Infants. Clinical Pharmacokinetics, 2011, 50, 613-623.	3.5	100
28	Applications of Physiologically Based Absorption Models in Drug Discovery and Development. Molecular Pharmaceutics, 2008, 5, 760-775.	4.6	107
29	A Novel Strategy for Physiologically Based Predictions of Human Pharmacokinetics. Clinical Pharmacokinetics, 2006, 45, 511-542.	3 . 5	301
30	Predicting Pharmacokinetic Food Effects Using Biorelevant Solubility Media and Physiologically Based Modelling. Clinical Pharmacokinetics, 2006, 45, 1213-1226.	3. 5	131
31	A strategy for preclinical formulation development using GastroPlusâ,, as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. European Journal of Pharmaceutical Sciences, 2006, 27, 91-99.	4.0	105
32	Application of Full Physiological Models for Pharmaceutical Drug Candidate Selection and Extrapolation of Pharmacokinetics to Man. Basic and Clinical Pharmacology and Toxicology, 2005, 96, 193-199.	2.5	91
33	An Evaluation of the Utility of Physiologically Based Models of Pharmacokinetics in Early Drug Discovery. Journal of Pharmaceutical Sciences, 2005, 94, 2327-2343.	3.3	100
34	Interspecies Scaling. , 2004, , 133-175.		3
35	Prediction of intestinal absorption: comparative assessment of gastroplusâ,,¢ and ideaâ,,¢. European Journal of Pharmaceutical Sciences, 2002, 17, 51-61.	4.0	159