Jeremiah J Zartman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1050891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational Design and Identification of Harmineâ€Inspired, N â€Heterocyclic DYRK1A Inhibitors Employing a Functional Genomic In Vivo Drosophila Model System**. ChemMedChem, 2022, , .	3.2	2

Front Cover: Rational Design and Identification of Harmineâ€Inspired, <i>N</i>â€Heterocyclic DYRK1A Inhibitors Employing a Functional Genomic In Vivo <i>Drosophila</i>Model System (ChemMedChem) Tj ETQq0 0 OrgBT /Ov@lock 10 T

3	Principles for the design of multicellular engineered living systems. APL Bioengineering, 2022, 6, 010903.	6.2	17
4	MAPPER: An Open-Source, High-Dimensional Image Analysis Pipeline Unmasks Differential Regulation of Drosophila Wing Features. Frontiers in Genetics, 2022, 13, 869719.	2.3	2
5	Pinching and pushing: fold formation in the Drosophila dorsal epidermis. Biophysical Journal, 2021, 120, 4202-4213.	0.5	2
6	From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control. PLoS Computational Biology, 2021, 17, e1009543.	3.2	8
7	Multiscale Models Coupling Chemical Signaling and Mechanical Properties for Studying Tissue Growth. , 2020, , 173-195.		5
8	Interplay between morphogenâ€directed positional information systems and physiological signaling. Developmental Dynamics, 2020, 249, 328-341.	1.8	15
9	Epithelial organ shape is generated by patterned actomyosin contractility and maintained by the extracellular matrix. PLoS Computational Biology, 2020, 16, e1008105.	3.2	26
10	Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth. Nature Communications, 2020, 11, 3017.	12.8	38
11	Decoding Calcium Signaling Dynamics during Drosophila Wing Disc Development. Biophysical Journal, 2019, 116, 725-740.	0.5	39
12	Tools to reverse-engineer multicellular systems: case studies using the fruit fly. Journal of Biological Engineering, 2019, 13, 33.	4.7	9
13	Multi-cellular engineered living systems: building a community around responsible research on emergence. Biofabrication, 2019, 11, 043001.	7.1	13
14	Combined Scaffold Evaluation and Systemsâ€Level Transcriptomeâ€Based Analysis for Accelerated Lead Optimization Reveals Ribosomal Targeting Spirooxindole Cyclopropanes. ChemMedChem, 2019, 14, 1653-1661.	3.2	11
15	Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems. Biomicrofluidics, 2019, 13, 024111.	2.4	16
16	Potassium channel activity controls breast cancer metastasis by affecting β-catenin signaling. Cell Death and Disease, 2019, 10, 180.	6.3	51
17	Rapid Fabrication of Custom Microfluidic Devices for Research and Educational Applications. Journal of Visualized Experiments, 2019, , .	0.3	2
18	Calcium as a signal integrator in developing epithelial tissues. Physical Biology, 2018, 15, 051001.	1.8	34

JEREMIAH J ZARTMAN

#	Article	IF	CITATIONS
19	Reverse-engineering organogenesis through feedback loops between model systems. Current Opinion in Biotechnology, 2018, 52, 1-8.	6.6	15
20	Modeling intercellular calcium dynamics in an epithelial organ using Dynamic Mode Decomposition. IFAC-PapersOnLine, 2018, 51, 120-123.	0.9	0
21	Mapping the calcium signalsome during Drosophila wing development. IFAC-PapersOnLine, 2018, 51, 108-109.	0.9	0
22	Single cell analysis of oscillatory Ca2+ signalling in epithelial cells. IFAC-PapersOnLine, 2018, 51, 116-117.	0.9	0
23	Organ Culture Methods for the Drosophila Wing Imaginal Disc. , 2018, , 145-164.		1
24	A new registration approach for dynamic analysis of calcium signals in organs. , 2018, 2018, 934-937.		4
25	Preclinical study of a Kv11.1 potassium channel activator as antineoplastic approach for breast cancer. Oncotarget, 2018, 9, 3321-3337.	1.8	41
26	The Emerging Field Of Synthetic Developmental Biology. , 2018, , .		0
27	Release of Applied Mechanical Loading Stimulates Intercellular Calcium Waves in Drosophila WingÂDiscs. Biophysical Journal, 2017, 113, 491-501.	0.5	32
28	Whole blood clot optical clearing for nondestructive 3D imaging and quantitative analysis. Biomedical Optics Express, 2017, 8, 3671.	2.9	12
29	Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia. PLoS Computational Biology, 2017, 13, e1005533.	3.2	35
30	On-chip three-dimensional tissue histology for microbiopsies. Biomicrofluidics, 2016, 10, .	2.4	3
31	Cultivation and Live Imaging of Drosophila Imaginal Discs. Methods in Molecular Biology, 2016, 1478, 203-213.	0.9	27
32	Robust cell tracking in epithelial tissues through identification of maximum common subgraphs. Journal of the Royal Society Interface, 2016, 13, 20160725.	3.4	8
33	Capabilities and Limitations of Tissue Size Control through Passive Mechanical Forces. PLoS Computational Biology, 2015, 11, e1004679.	3.2	39
34	Patterning of wound-induced intercellular Ca2+flashes in a developing epithelium. Physical Biology, 2015, 12, 056005.	1.8	34
35	Spatiotemporal patterning of polyamines in Drosophila development. Amino Acids, 2015, 47, 2665-2670.	2.7	4
36	Coordination of Patterning and Growth by the Morphogen DPP. Current Biology, 2014, 24, R245-R255.	3.9	142

JEREMIAH J ZARTMAN

#	Article	IF	CITATIONS
37	An inverse small molecule screen to design a chemically defined medium supporting long-term growth of Drosophila cell lines. Molecular BioSystems, 2014, 10, 2713-2723.	2.9	19
38	Sizing it up: The mechanical feedback hypothesis of organ growth regulation. Seminars in Cell and Developmental Biology, 2014, 35, 73-81.	5.0	48
39	A high-throughput template for optimizing <i>Drosophila</i> organ culture with response-surface methods. Development (Cambridge), 2013, 140, 667-674.	2.5	71
40	Pattern formation by a moving morphogen source. Physical Biology, 2011, 8, 045003.	1.8	26
41	Unit Operations of Tissue Development: Epithelial Folding. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 231-246.	6.8	34
42	Bistability coordinates activation of the EGFR and DPP pathways in <i>Drosophila</i> vein differentiation. Molecular Systems Biology, 2009, 5, 278.	7.2	23
43	Feedback control of the EGFR signaling gradient: superposition of domain-splitting events in <i>Drosophila</i> oogenesis. Development (Cambridge), 2009, 136, 2903-2911.	2.5	36
44	Expression patterns of cadherin genes in Drosophila oogenesis. Gene Expression Patterns, 2009, 9, 31-36.	0.8	22
45	Cad74A is regulated by BR and is required for robust dorsal appendage formation in Drosophila oogenesis. Developmental Biology, 2008, 322, 289-301.	2.0	16
46	A Combinatorial Code for Pattern Formation in Drosophila Oogenesis. Developmental Cell, 2008, 15, 725-737.	7.0	65
47	Enhancer Organization: Transistor with a Twist or Something in a Different Vein?. Current Biology, 2007, 17, R1048-R1050.	3.9	3
48	Flow-visualization during macrovoid pore formation in dry-cast cellulose acetate membranes. Journal of Membrane Science, 2003, 211, 71-90.	8.2	52
49	Macrovoid pore formation in dry-cast cellulose acetate membranes: buoyancy studies. Journal of Membrane Science, 2002, 205, 11-21.	8.2	36
50	Macrovoid growth during polymer membrane casting. Desalination, 2002, 145, 17-23.	8.2	12
51	Microfluidic device design, fabrication, and testing protocols. Protocol Exchange, 0, , .	0.3	31