Koen B Pouwels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10508802/publications.pdf

Version: 2024-02-01

38 papers 4,680 citations

236925 25 h-index 315739 38 g-index

53 all docs 53 docs citations

53 times ranked 8009 citing authors

#	Article	IF	CITATIONS
1	An Observational Cohort Study on the Incidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and B.1.1.7 Variant Infection in Healthcare Workers by Antibody and Vaccination Status. Clinical Infectious Diseases, 2022, 74, 1208-1219.	5.8	64
2	Role of locum GPs in antibiotic prescribing and stewardship: a mixed-methods study. British Journal of General Practice, 2022, 72, e118-e127.	1.4	6
3	Symptoms and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Positivity in the General Population in the United Kingdom. Clinical Infectious Diseases, 2022, 75, e329-e337.	5.8	20
4	Effect of Covid-19 Vaccination on Transmission of Alpha and Delta Variants. New England Journal of Medicine, 2022, 386, 744-756.	27.0	323
5	Improving local prevalence estimates of SARS-CoV-2 infections using a causal debiasing framework. Nature Microbiology, 2022, 7, 97-107.	13.3	27
6	Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nature Medicine, 2022, 28, 1072-1082.	30.7	147
7	Trajectory of long covid symptoms after covid-19 vaccination: community based cohort study. BMJ, The, 2022, 377, e069676.	6.0	214
8	Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. New England Journal of Medicine, 2021, 384, 533-540.	27.0	803
9	Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey. Lancet Public Health, The, 2021, 6, e30-e38.	10.0	147
10	Quantitative SARS-CoV-2 anti-spike responses to Pfizer–BioNTech and Oxford–AstraZeneca vaccines by previous infection status. Clinical Microbiology and Infection, 2021, 27, 1516.e7-1516.e14.	6.0	100
11	Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom. Nature Medicine, 2021, 27, 1370-1378.	30.7	260
12	Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demonstrate wide variation across populations and over time. ELife, 2021, 10, .	6.0	91
13	Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom. Nature Microbiology, 2021, 6, 1140-1149.	13.3	254
14	The Duration, Dynamics, and Determinants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibody Responses in Individual Healthcare Workers. Clinical Infectious Diseases, 2021, 73, e699-e709.	5.8	235
15	Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nature Medicine, 2021, 27, 2127-2135.	30.7	450
16	Anti-spike antibody response to natural SARS-CoV-2 infection in the general population. Nature Communications, 2021, 12, 6250.	12.8	88
17	Tracking the Emergence of SARS-CoV-2 Alpha Variant in the United Kingdom. New England Journal of Medicine, 2021, 385, 2582-2585.	27.0	49
18	Delayed Antibiotic Prescription by General Practitioners in the UK: A Stated-Choice Study. Antibiotics, 2020, 9, 608.	3.7	4

#	Article	IF	CITATIONS
19	Awareness of Appropriate Antibiotic Use in Primary Care for Influenza-Like Illness: Evidence of Improvement from UK Population-Based Surveys. Antibiotics, 2020, 9, 690.	3.7	3
20	Quantifying the economic cost of antibiotic resistance and the impact of related interventions: rapid methodological review, conceptual framework and recommendations for future studies. BMC Medicine, 2020, 18, 38.	5.5	52
21	Reducing expectations for antibiotics in primary care: a randomised experiment to test the response to fear-based messages about antimicrobial resistance. BMC Medicine, 2020, 18, 110.	5. 5	24
22	Machine-learning-assisted selection of antibiotic prescription. Nature Medicine, 2019, 25, 1033-1034.	30.7	12
23	Optimising trial designs to identify appropriate antibiotic treatment durations. BMC Medicine, 2019, 17, 115.	5. 5	9
24	Selection and co-selection of antibiotic resistances among Escherichia coli by antibiotic use in primary care: An ecological analysis. PLoS ONE, 2019, 14, e0218134.	2.5	34
25	Duration of antibiotic treatment for common infections in English primary care: cross sectional analysis and comparison with guidelines. BMJ: British Medical Journal, 2019, 364, 1440.	2.3	74
26	The challenge of antimicrobial resistance: What economics can contribute. Science, 2019, 364, .	12.6	292
27	Antibiotic resistance, stewardship, and consumption. Lancet Planetary Health, The, 2019, 3, e66.	11.4	7
28	Comment on 'The distribution of antibiotic use and its association with antibiotic resistance'. ELife, $2019, 8, .$	6.0	7
29	Antibiotics in primary care in England: which antibiotics are prescribed and for which conditions?. Journal of Antimicrobial Chemotherapy, 2018, 73, ii2-ii10.	3.0	208
30	Association between use of different antibiotics and trimethoprim resistance: going beyond the obvious crude association. Journal of Antimicrobial Chemotherapy, 2018, 73, 1700-1707.	3.0	68
31	Will co-trimoxazole resistance rates ever go down? Resistance rates remain high despite decades of reduced co-trimoxazole consumption. Journal of Global Antimicrobial Resistance, 2017, 11, 71-74.	2.2	9
32	Association between statins and infections among patients with diabetes: a cohort and prescription sequence symmetry analysis. Pharmacoepidemiology and Drug Safety, 2016, 25, 1124-1130.	1.9	14
33	Quality of reporting of confounding remained suboptimal after theÂSTROBE guideline. Journal of Clinical Epidemiology, 2016, 69, 217-224.	5.0	71
34	Re: "A Prospective Study of Statin Drug Use and Lower Urinary Tract Symptoms in Older Men". American Journal of Epidemiology, 2014, 179, 927-927.	3.4	5
35	Angiotensin-Converting Enzyme Inhibitor Treatment and the Development of Urinary Tract Infections: A Prescription Sequence Symmetry Analysis. Drug Safety, 2013, 36, 1079-1086.	3.2	28
36	Effect of pravastatin and fosinopril on recurrent urinary tract infections. Journal of Antimicrobial Chemotherapy, 2013, 68, 708-714.	3.0	27

#	Article	IF	CITATION
37	Cost-effectiveness of vaccination against meningococcal B among Dutch infants. Human Vaccines and Immunotherapeutics, 2013, 9, 1129-1138.	3.3	51
38	Meningococcal Serogroup A, C, W135 and Y Conjugated Vaccine: A Cost-Effectiveness Analysis in the Netherlands. PLoS ONE, 2013, 8, e65036.	2.5	27