Peter Kraiczy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10506330/publications.pdf

Version: 2024-02-01

66343 85541 5,547 97 42 71 citations h-index g-index papers 101 101 101 2388 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Lyme Disease Pathogenesis. Current Issues in Molecular Biology, 2022, 42, 473-518.	2.4	49
2	Utilizing Two Borrelia bavariensis Isolates Naturally Lacking the PFam54 Gene Array To Elucidate the Roles of PFam54-Encoded Proteins. Applied and Environmental Microbiology, 2022, 88, AEM0155521.	3.1	0
3	The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitology Research, 2022, 121, 781-803.	1.6	28
4	Lipoproteome screening of the Lyme disease agent identifies inhibitors of antibody-mediated complement killing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117770119.	7.1	16
5	Interaction between Borrelia miyamotoi variable major proteins Vlp15/16 and Vlp18 with plasminogen and complement. Scientific Reports, 2021, 11, 4964.	3.3	8
6	Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system. PLoS Pathogens, 2021, 17, e1009801.	4.7	16
7	Bactericidal activity of avian complement: a contribution to understand avian-host tropism of Lyme borreliae. Parasites and Vectors, 2021, 14, 451.	2.5	5
8	A soft tick Ornithodoros moubata salivary protein OmCl is a potent inhibitor to prevent avian complement activation. Ticks and Tick-borne Diseases, 2020, 11, 101354.	2.7	11
9	Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Medical Microbiology and Immunology, 2020, 209, 277-299.	4.8	73
10	Immune Evasion Strategies of Relapsing Fever Spirochetes. Frontiers in Immunology, 2020, 11, 1560.	4.8	14
11	The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease. Infection and Immunity, 2020, 88, .	2.2	13
12	New Insights Into CRASP-Mediated Complement Evasion in the Lyme Disease Enzootic Cycle. Frontiers in Cellular and Infection Microbiology, 2020, 10 , 1 .	3.9	175
13	Complement Evasion Contributes to Lyme Borreliae–Host Associations. Trends in Parasitology, 2020, 36, 634-645.	3.3	46
14	Combination of microbiome analysis and serodiagnostics to assess the risk of pathogen transmission by ticks to humans and animals in central Germany. Parasites and Vectors, 2019, 12, 11.	2.5	22
15	The <i>Acinetobacter</i> trimeric autotransporter adhesin Ata controls key virulence traits of <i>Acinetobacter baumannii</i> Virulence, 2019, 10, 68-81.	4.4	55
16	Elucidating the Immune Evasion Mechanisms of Borrelia mayonii, the Causative Agent of Lyme Disease. Frontiers in Immunology, 2019, 10, 2722.	4.8	21
17	Blood treatment of Lyme borreliae demonstrates the mechanism of <scp>CspZ</scp> â€mediated complement evasion to promote systemic infection in vertebrate hosts. Cellular Microbiology, 2019, 21, e12998.	2.1	47
18	Inter- and intraspecies-specific adhesion of Lyme borreliae to human keratinocytes. Ticks and Tick-borne Diseases, 2019, 10, 207-212.	2.7	4

#	Article	IF	CITATIONS
19	Identification and Characterization of Borrelia burgdorferi Complement-Binding Proteins. Methods in Molecular Biology, 2018, 1690, 95-103.	0.9	1
20	The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin(ogen). Frontiers in Cellular and Infection Microbiology, 2018, 8, 23.	3.9	22
21	Eliminating Factor H-Binding Activity of Borrelia burgdorferi CspZ Combined with Virus-Like Particle Conjugation Enhances Its Efficacy as a Lyme Disease Vaccine. Frontiers in Immunology, 2018, 9, 181.	4.8	32
22	Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathogens, 2018, 14, e1007106.	4.7	63
23	Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis. Scientific Reports, 2018, 8, 11286.	3.3	5
24	Further Insights Into the Interaction of Human and Animal Complement Regulator Factor H With Viable Lyme Disease Spirochetes. Frontiers in Veterinary Science, 2018, 5, 346.	2.2	22
25	Immune evasion of Borrelia miyamotoi: CbiA, a novel outer surface protein exhibiting complement binding and inactivating properties. Scientific Reports, 2017, 7, 303.	3.3	40
26	There Is a Method to the Madness: Strategies to Study Host Complement Evasion by Lyme Disease and Relapsing Fever Spirochetes. Frontiers in Microbiology, 2017, 8, 328.	3.5	26
27	Travelling between Two Worlds: Complement as a Gatekeeper for an Expanded Host Range of Lyme Disease Spirochetes. Veterinary Sciences, 2016, 3, 12.	1.7	30
28	Hide and Seek: How Lyme Disease Spirochetes Overcome Complement Attack. Frontiers in Immunology, 2016, 7, 385.	4.8	74
29	BGA66 and BGA71 facilitate complement resistance of <i>Borrelia bavariensis</i> by inhibiting assembly of the membrane attack complex. Molecular Microbiology, 2016, 99, 407-424.	2.5	63
30	CipA of <i>Acinetobacter baumannii</i> Is a Novel Plasminogen Binding and Complement Inhibitory Protein. Journal of Infectious Diseases, 2016, 213, 1388-1399.	4.0	47
31	Versatile Roles of CspA Orthologs in Complement Inactivation of Serum-Resistant Lyme Disease Spirochetes. Infection and Immunity, 2014, 82, 380-392.	2.2	71
32	BBA70 of Borrelia burgdorferi Is a Novel Plasminogen-binding Protein. Journal of Biological Chemistry, 2013, 288, 25229-25243.	3.4	57
33	Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks and Tick-borne Diseases, 2013, 4, 26-34.	2.7	113
34	CspA from Borrelia burgdorferi Inhibits the Terminal Complement Pathway. MBio, 2013, 4, .	4.1	84
35	ErpC, a member of the complement regulator-acquiring family of surface proteins fromBorrelia burgdorferi, possesses an architecture previously unseen in this protein family. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 624-628.	0.7	12
36	Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of <i>Borrelia burgdorferi</i> Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 629-633.	0.7	24

#	Article	IF	Citations
37	Borrelia valaisiana Resist Complement-Mediated Killing Independently of the Recruitment of Immune Regulators and Inactivation of Complement Components. PLoS ONE, 2013, 8, e53659.	2.5	15
38	Contribution of the Infection-Associated Complement Regulator-Acquiring Surface Protein 4 (ErpC) to Complement Resistance of Borrelia burgdorferi. Clinical and Developmental Immunology, 2012, 2012, 1-12.	3.3	50
39	Whole-Genome Sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii. Journal of Bacteriology, 2012, 194, 545-546.	2.2	56
40	Borrelial Complement-Binding Proteins. , 2012, , 63-88.		3
41	Staphylococcus aureus Proteins Sbi and Efb Recruit Human Plasmin to Degrade Complement C3 and C3b. PLoS ONE, 2012, 7, e47638.	2.5	57
42	Identification and functional characterisation of Complement Regulator Acquiring Surface Protein-1 of serum resistant Borrelia garinii OspA serotype 4. BMC Microbiology, 2010, 10, 43.	3.3	27
43	Complement Regulator–Acquiring Surface Protein 1 of <i>Borrelia burgdorferi</i> Binds to Human Bone Morphogenic Protein 2, Several Extracellular Matrix Proteins, and Plasminogen. Journal of Infectious Diseases, 2010, 202, 490-498.	4.0	83
44	Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i>Borrelia lusitaniae </i> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" i="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" i="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" i="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" i="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" i="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" li="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" li="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" li="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" li="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" li="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" li="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor H Is Associated with Sensitivity of <i <="" borrelia="" li="" lusitaniae=""> Inadequate Binding of Immune Regulator Factor Fac</i></i></i></i></i></i></i></i></i></i></i></i>	2.2	19
45	Functional Characterization of <i>Borrelia spielmanii</i> Outer Surface Proteins That Interact with Distinct Members of the Human Factor H Protein Family and with Plasminogen. Infection and Immunity, 2010, 78, 39-48.	2.2	50
46	Molecular Characterization of the Interaction of <i>Borrelia parkeri</i> and <i>Borrelia turicatae</i> with Human Complement Regulators. Infection and Immunity, 2010, 78, 2199-2208.	2.2	46
47	Early Production of IL-22 but Not IL-17 by Peripheral Blood Mononuclear Cells Exposed to live Borrelia burgdorferi: The Role of Monocytes and Interleukin-1. PLoS Pathogens, 2010, 6, e1001144.	4.7	38
48	Complement Factor H-Related Proteins CFHR2 and CFHR5 Represent Novel Ligands for the Infection-Associated CRASP Proteins of Borrelia burgdorferi. PLoS ONE, 2010, 5, e13519.	2.5	78
49	Comparison of in vitro activities of tigecycline, doxycycline, and tetracycline against the spirochete Borrelia burgdorferi. Ticks and Tick-borne Diseases, 2010, 1, 30-34.	2.7	24
50	Borrelia recurrentis Employs a Novel Multifunctional Surface Protein with Anti-Complement, Anti-Opsonic and Invasive Potential to Escape Innate Immunity. PLoS ONE, 2009, 4, e4858.	2.5	76
51	In Vitro Susceptibility of <i>Borrelia spielmanii</i> Treatment of Lyme Disease. Antimicrobial Agents and Chemotherapy, 2009, 53, 1281-1284.	3.2	17
52	<i>Borrelia burgdorferi</i> Infection-Associated Surface Proteins ErpP, ErpA, and ErpC Bind Human Plasminogen. Infection and Immunity, 2009, 77, 300-306.	2.2	103
53	CspA-Mediated Binding of Human Factor H Inhibits Complement Deposition and Confers Serum Resistance in <i>Borrelia burgdorferi</i> Infection and Immunity, 2009, 77, 2773-2782.	2.2	87
54	Identification and characterization of the factor H and FHL-1 binding complement regulator-acquiring surface protein 1 of the Lyme disease spirochete Borrelia spielmanii sp. nov International Journal of Medical Microbiology, 2009, 299, 141-154.	3.6	30

#	Article	IF	CITATIONS
55	Mutational analyses of the BbCRASP-1 protein of Borrelia burgdorferi identify residues relevant for the architecture and binding of host complement regulators FHL-1 and factor H. International Journal of Medical Microbiology, 2009, 299, 255-268.	3.6	39
56	Borrelia burgdorferi complement regulator-acquiring surface proteins (BbCRASPs): Expression patterns during the mammal–tick infection cycle. International Journal of Medical Microbiology, 2008, 298, 249-256.	3.6	51
57	FHR-1, an additional human plasma protein, binds to complement regulator-acquiring surface proteins of Borrelia burgdorferi. International Journal of Medical Microbiology, 2008, 298, 287-291.	3.6	10
58	Changes in the expression pattern of structural proteins after exposure of Borrelia burgdorferi to penicillin G and doxycycline. International Journal of Medical Microbiology, 2008, 298, 325-332.	3.6	2
59	Binding of complement regulatory protein factor H enhances serum resistance of Borrelia spielmanii sp. nov International Journal of Medical Microbiology, 2008, 298, 292-294.	3.6	6
60	Assessment of the regions within complement regulator-acquiring surface protein (CRASP)-2 of Borrelia burgdorferi required for interaction with host immune regulators FHL-1 and factor H. International Journal of Medical Microbiology, 2008, 298, 268-271.	3.6	3
61	BbCRASP-1 of the Lyme disease spirochetes induces antibodies to non-denatured structural determinants in humans. International Journal of Medical Microbiology, 2008, 298, 284-286.	3.6	1
62	BhCRASP-1 of the relapsing fever spirochete Borrelia hermsii is a factor H- and plasminogen-binding protein. International Journal of Medical Microbiology, 2008, 298, 272-283.	3.6	10
63	Systematic analysis highlights the key role of TLR2/NF-κB/MAP kinase signaling for IL-8 induction by macrophage-like THP-1 cells under influence of Borrelia burgdorferi lysates. International Journal of Biochemistry and Cell Biology, 2008, 40, 2508-2521.	2.8	13
64	Deciphering the Ligand-binding Sites in the Borrelia burgdorferi Complement Regulator-acquiring Surface Protein 2 Required for Interactions with the Human Immune Regulators Factor H and Factor H-like Protein 1. Journal of Biological Chemistry, 2008, 283, 34855-34863.	3.4	64
65	<i>Borrelia burgdorferi</i> Complement Regulator-Acquiring Surface Protein 2 (CspZ) as a Serological Marker of Human Lyme Disease. Vaccine Journal, 2008, 15, 484-491.	3.1	38
66	Dual Binding Specificity of a <i>Borrelia hermsii</i> -Associated Complement Regulator-Acquiring Surface Protein for Factor H and Plasminogen Discloses a Putative Virulence Factor of Relapsing Fever Spirochetes. Journal of Immunology, 2007, 178, 7292-7301.	0.8	95
67	Human Pathogenic (i>Borrelia spielmanii (li>sp. nov. Resists Complement-Mediated Killing by Direct Binding of Immune Regulators Factor H and Factor H-Like Protein 1. Infection and Immunity, 2007, 75, 4817-4825.	2.2	62
68	Coordinated Expression of Borrelia burgdorferi Complement Regulator-Acquiring Surface Proteins during the Lyme Disease Spirochete's Mammal-Tick Infection Cycle. Infection and Immunity, 2007, 75, 4227-4236.	2.2	110
69	Binding of Human Factor H–Related Protein 1 to Serumâ€ResistantBorrelia burgdorferils Mediated by Borrelial Complement Regulator–Acquiring Surface Proteins. Journal of Infectious Diseases, 2007, 196, 124-133.	4.0	112
70	Leptospira interrogans Endostatin-Like Outer Membrane Proteins Bind Host Fibronectin, Laminin and Regulators of Complement. PLoS ONE, 2007, 2, e1188.	2.5	189
71	Complement escape of human pathogenic bacteria by acquisition of complement regulators. Molecular Immunology, 2006, 43, 31-44.	2.2	130
72	Structure–function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi. International Journal of Medical Microbiology, 2006, 296, 177-184.	3.6	34

#	Article	IF	Citations
73	Risk of culture-confirmed borrelial persistence in patients treated for erythema migrans and possible mechanisms of resistance. International Journal of Medical Microbiology, 2006, 296, 233-241.	3.6	11
74	Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1. Molecular Microbiology, 2006, 61, 1220-1236.	2.5	153
75	Binding of human complement regulators FHL-1 and factor H to CRASP-1 orthologs of Borrelia burgdorferi. Wiener Klinische Wochenschrift, 2006, 118, 669-676.	1.9	42
76	Borrelia burgdorferi Complement Regulator-Acquiring Surface Protein 1 of the Lyme Disease Spirochetes Is Expressed in Humans and Induces Antibody Responses Restricted to Nondenatured Structural Determinants. Infection and Immunity, 2006, 74, 7024-7028.	2.2	26
77	LfhA, a Novel Factor H-Binding Protein of Leptospira interrogans. Infection and Immunity, 2006, 74, 2659-2666.	2.2	165
78	A novel fold for the factor H–binding protein BbCRASP-1 of Borrelia burgdorferi. Nature Structural and Molecular Biology, 2005, 12, 276-277.	8.2	72
79	In Vitro Susceptibility Testing of Borrelia burgdorferi Sensu Lato Isolates Cultured from Patients with Erythema Migrans before and after Antimicrobial Chemotherapy. Antimicrobial Agents and Chemotherapy, 2005, 49, 1294-1301.	3.2	88
80	Identification and Functional Characterization of Complement Regulator-Acquiring Surface Protein 1 of the Lyme Disease Spirochetes Borrelia afzelii and Borrelia garinii. Infection and Immunity, 2005, 73, 2351-2359.	2.2	96
81	Borrelia burgdorferi Regulates Expression of Complement Regulator-Acquiring Surface Protein 1 during the Mammal-Tick Infection Cycle. Infection and Immunity, 2005, 73, 7398-7405.	2.2	69
82	Complement Resistance of Borrelia burgdorferi Correlates with the Expression of BbCRASP-1, a Novel Linear Plasmid-encoded Surface Protein That Interacts with Human Factor H and FHL-1 and Is Unrelated to Erp Proteins. Journal of Biological Chemistry, 2004, 279, 2421-2429.	3.4	218
83	Comparison of In Vitro Activities of Ketolides, Macrolides, and an Azalide against the Spirochete <i>Borrelia burgdorferi</i> Antimicrobial Agents and Chemotherapy, 2004, 48, 344-347.	3.2	28
84	Crystallization and preliminary crystallographic analysis of BbCRASP-1, a complement regulator-acquiring surface protein ofBorrelia burgdorferi. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 929-932.	2.5	9
85	Immunological characterization of the complement regulator factor H-binding CRASP and Erp proteins of Borrelia burgdorferi. International Journal of Medical Microbiology Supplements, 2004, 293, 152-157.	0.4	58
86	Immune evasion of Borrelia burgdorferi: mapping of a complement-inhibitor factor H-binding site of BbCRASP-3, a novel member of the Erp protein family. European Journal of Immunology, 2003, 33, 697-707.	2.9	147
87	The Responsiveness of Human Vδ1 γδT Cells toBorrelia burgdorferils Largely Restricted to Synovialâ€Fluid Cells from Patients with Lyme Arthritis. Journal of Infectious Diseases, 2002, 186, 1043-1046.	4.0	14
88	Standardised in vitro susceptibility testing of Borrelia burgdorferi against well-known and newly developed antimicrobial agents — Possible implications for new therapeutic approaches to Lyme disease. International Journal of Medical Microbiology, 2002, 291, 125-137.	3.6	31
89	Immune evasion of Borrelia burgdorferi: Insufficient killing of the pathogens by complement and antibody. International Journal of Medical Microbiology, 2002, 291, 141-146.	3.6	35
90	Host association of Borrelia burgdorferi sensu lato – the key role of host complement. Trends in Microbiology, 2002, 10, 74-79.	7.7	372

PETER KRAICZY

#	Article	IF	CITATIONS
91	Complement regulator-acquiring surface proteins of Borrelia burgdorferi: a new protein family involved in complement resistance. Wiener Klinische Wochenschrift, 2002, 114, 568-73.	1.9	19
92	Mechanism of complement resistance of pathogenic Borrelia burgdorferi isolates. International Immunopharmacology, 2001, 1, 393-401.	3.8	106
93	Immune evasion ofBorrelia burgdorferi by acquisition of human complement regulators FHL-1/reconectin and Factor H. European Journal of Immunology, 2001, 31, 1674-1684.	2.9	239
94	Further Characterization of Complement Regulator-Acquiring Surface Proteins of Borrelia burgdorferi. Infection and Immunity, 2001, 69, 7800-7809.	2.2	221
95	In Vitro Activities of Fluoroquinolones against the Spirochete <i>Borrelia burgdorferi</i> Antimicrobial Agents and Chemotherapy, 2001, 45, 2486-2494.	3.2	25
96	Comparison of Two Laboratory Methods for the Determination of Serum Resistance in Borrelia burgdorferi Isolates. Immunobiology, 2000, 201, 406-419.	1.9	68
97	Borreliacidal activity of early Lyme disease sera against complement-resistant Borrelia afzelii FEM1 wild-type and an OspC-lacking FEM1 variant. Journal of Medical Microbiology, 2000, 49, 917-928.	1.8	16