Nicolas Illy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/105047/publications.pdf Version: 2024-02-01

NICOLASIUN

#	Article	IF	CITATIONS
1	Episulfide Anionic Ring-Opening Polymerization Initiated by Alcohols and Primary Amines in the Presence of Î ³ -Thiolactones. Macromolecules, 2022, 55, 5430-5440.	4.8	6
2	Bio-based poly(ester- <i>alt</i> -thioether)s synthesized by organo-catalyzed ring-opening copolymerizations of eugenol-based epoxides and <i>N</i> -acetyl homocysteine thiolactone. Green Chemistry, 2021, 23, 7743-7750.	9.0	17
3	Alternating copolymerization of bio-based N-acetylhomocysteine thiolactone and epoxides. European Polymer Journal, 2021, 153, 110490.	5.4	9
4	Polymerization of epoxide monomers promoted by <i>t</i> BuP ₄ phosphazene base: a comparative study of kinetic behavior. Polymer Chemistry, 2020, 11, 3585-3592.	3.9	13
5	Functional Poly(ester- <i>alt</i> -sulfide)s Synthesized by Organo-Catalyzed Anionic Ring-Opening Alternating Copolymerization of Oxiranes and γ-Thiobutyrolactones. Macromolecules, 2020, 53, 5188-5198.	4.8	22
6	pH‣ensitive Poly(ethylene glycol)/Poly(ethoxyethyl glycidyl ether) Block Copolymers: Synthesis, Characterization, Encapsulation, and Delivery of a Hydrophobic Drug. Macromolecular Chemistry and Physics, 2019, 220, 1900210.	2.2	6
7	An alternative approach to create <i>N</i> -substituted cyclic dipeptides. Polymer Chemistry, 2019, 10, 776-785.	3.9	10
8	Modification of prolineâ€based 2,5â€diketopiperazines by anionic ringâ€opening polymerization. Journal of Polymer Science Part A, 2019, 57, 1008-1016.	2.3	8
9	Synthesis and Solid-State Properties of PolyC ₃ (Co)polymers Containing (CH ₂ –CH ₂ –C(COOR) ₂) Repeat Units with Densely Packed Fluorocarbon Lateral Chains. Macromolecules, 2019, 52, 9199-9207.	4.8	3
10	β yclodextrinâ€Based Star Amphiphilic Copolymers: Synthesis, Characterization, and Evaluation as Artificial Channels. Macromolecular Chemistry and Physics, 2019, 220, 1800308.	2.2	4
11	Anionic ringâ€opening polymerization of <i>N</i> â€glycidylphthalimide: Combination of phosphazene base and activated monomer mechanism. Journal of Polymer Science Part A, 2018, 56, 1091-1099.	2.3	11
12	Phosphazene/triisobutylaluminum-promoted anionic ring-opening polymerization of 1,2-epoxybutane initiated by secondary carbamates. Polymer Chemistry, 2017, 8, 4005-4013.	3.9	18
13	Preliminary investigations on a simple polyelectrolyte derived from (CH 2 CH 2 C(COOH) 2) n : Unexpected solubility-insolubility pattern controlled selectively by the nature of the alkali counterion. Polymer, 2017, 116, 515-522.	3.8	4
14	A Chitosan Derivative Containing Both Carboxylic Acid and Quaternary Ammonium Moieties for the Synthesis of Cyclic Carbonates. ChemSusChem, 2016, 9, 2167-2173.	6.8	27
15	Phosphorylation of bio-based compounds: the state of the art. Polymer Chemistry, 2015, 6, 6257-6291.	3.9	125
16	Phosphazene-Promoted Metal-Free Ring-Opening Polymerization of 1,2-Epoxybutane Initiated by Secondary Amides. Macromolecules, 2015, 48, 7755-7764.	4.8	34
17	Synthesis, characterization, and ion-complexing properties of polymers displaying densely packed arrays of crown-ethers as lateral substituents. Journal of Polymer Science Part A, 2014, 52, 2337-2345.	2.3	2
18	Synthesis of waterâ€soluble allylâ€functionalized oligochitosan and its modification by thiol–ene addition in water. Journal of Polymer Science Part A, 2014, 52, 39-48.	2.3	29

NICOLAS ILLY

#	Article	IF	CITATIONS
19	The influence of formulation and processing parameters on the thermal properties of a chitosan-epoxy prepolymer system. Polymer International, 2014, 63, 420-426.	3.1	29
20	New prospects for the synthesis of N-alkyl phosphonate/phosphonic acid-bearing oligo-chitosan. RSC Advances, 2014, 4, 24042-24052.	3.6	27
21	Synthesis and anionic ring-opening polymerization of crown-ether-like macrocyclic dilactones: An alternative route to PEG-containing polyesters and related networks. European Polymer Journal, 2013, 49, 4087-4097.	5.4	11
22	A polymeric membrane permeabilizer displaying densely packed arrays of crown ether lateral substituents. RSC Advances, 2012, 2, 8606-8609.	3.6	4
23	Metal-Chelating Polymers by Anionic Ring-Opening Polymerization and Their Use in Quantitative Mass Cytometry. Biomacromolecules, 2012, 13, 2359-2369.	5.4	51
24	Thiol-ene "clickable―carbon-chain polymers based on diallyl cyclopropane-1,1-dicarboxylate. Polymer, 2012, 53, 903-912.	3.8	25
25	Activation in anionic polymerization: Why phosphazene bases are very exciting promoters. Progress in Polymer Science, 2011, 36, 1132-1151.	24.7	159
26	Unexpected Interactions of an Alternating Poly(etherâ€ester) with Artificial and Biological Bilipidic Membranes. Macromolecular Symposia, 2010, 287, 60-68.	0.7	4
27	Control of End Groups in Anionic Polymerizations Using Phosphazene Bases and Protic Precursors As Initiating System (XH-Bu ^{<i>t</i>} P ₄ Approach): Application to the Ring-Opening Polymerization of Cyclopropane-1,1-Dicarboxylates. Macromolecules, 2010, 43, 8782-8789.	4.8	34
28	Metalâ€Free Activation in the Anionic Ringâ€Opening Polymerization of Cyclopropane Derivatives. Macromolecular Rapid Communications, 2009, 30, 1731-1735.	3.9	31
29	Regioselectively Functionalized Cellulose Derivatives: A Mini Review. Macromolecular Symposia, 2006, 244, 59-73.	0.7	49