John Gatesy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10504191/publications.pdf

Version: 2024-02-01

71102 69250 9,065 84 41 77 citations h-index g-index papers 93 93 93 8818 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Theoretical and Practical Considerations when using Retroelement Insertions to Estimate Species Trees in the Anomaly Zone. Systematic Biology, 2022, 71, 721-740.	5.6	10
2	Gene-tree misrooting drives conflicts in phylogenomic coalescent analyses of palaeognath birds. Molecular Phylogenetics and Evolution, 2022, 167, 107344.	2.7	16
3	Molecular evolutionary analyses of tooth genes support sequential loss of enamel and teeth in baleen whales (Mysticeti). Molecular Phylogenetics and Evolution, 2022, 171, 107463.	2.7	12
4	Phylogenomic Coalescent Analyses of Avian Retroelements Infer Zero-Length Branches at the Base of Neoaves, Emergent Support for Controversial Clades, and Ancient Introgressive Hybridization in Afroaves. Genes, 2022, 13, 1167.	2.4	2
5	Higher level phylogeny of baleen whales. , 2021, , 3-10.		1
6	Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annual Review of Animal Biosciences, 2021, 9, 29-53.	7.4	32
7	Collapsing dubiously resolved gene-tree branches in phylogenomic coalescent analyses. Molecular Phylogenetics and Evolution, 2021, 158, 107092.	2.7	24
8	Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Current Biology, 2021, 31, 2124-2139.e3.	3.9	30
9	Speciation in the deep: genomics and morphology reveal a new species of beaked whale <i>Mesoplodon eueu </i> . Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211213.	2.6	18
10	ILS-Aware Analysis of Low-Homoplasy Retroelement Insertions: Inference of Species Trees and Introgression Using Quartets. Journal of Heredity, 2020, 111, 147-168.	2.4	30
11	Phylogenomics reveals novel relationships among Neotropical crocodiles (Crocodylus spp.). Molecular Phylogenetics and Evolution, 2020, 152, 106924.	2.7	11
12	Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary. Frontiers in Genetics, 2019, 10, 1241.	2.3	41
13	Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Science Advances, 2019, 5, eaaw6671.	10.3	100
14	Odontogenic ameloblast-associated (ODAM) is inactivated in toothless/enamelless placental mammals and toothed whales. BMC Evolutionary Biology, 2019, 19, 31.	3.2	22
15	Partitioned coalescence support reveals biases in species-tree methods and detects gene trees that determine phylogenomic conflicts. Molecular Phylogenetics and Evolution, 2019, 139, 106539.	2.7	31
16	Gene-wise resampling outperforms site-wise resampling in phylogenetic coalescence analyses. Molecular Phylogenetics and Evolution, 2019, 131, 80-92.	2.7	33
17	Evolution of the MC5R gene in placental mammals with evidence for its inactivation in multiple lineages that lack sebaceous glands. Molecular Phylogenetics and Evolution, 2018, 120, 364-374.	2.7	35
18	Pinniped Diphyly and Bat Triphyly: More Homology Errors Drive Conflicts in the Mammalian Tree. Journal of Heredity, 2018, 109, 297-307.	2.4	13

#	Article	IF	CITATIONS
19	On the importance of homology in the age of phylogenomics. Systematics and Biodiversity, 2018, 16, 210-228.	1.2	78
20	Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets. Genes, 2018, 9, 123.	2.4	30
21	Microstructure and mechanical properties of different keratinous horns. Journal of the Royal Society Interface, 2018, 15, 20180093.	3.4	33
22	On the Illogic of Coalescence Simulations for Distinguishing the Causes of Conflict among Gene Trees. Journal of Phylogenetics & Evolutionary Biology, 2018, 06, .	0.2	3
23	Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans. Molecular Phylogenetics and Evolution, 2017, 109, 375-387.	2.7	19
24	Phylogenomic red flags: Homology errors and zombie lineages in the evolutionary diversification of placental mammals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9431-E9432.	7.1	50
25	Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust familyâ€level tree for Mammalia. Cladistics, 2017, 33, 295-332.	3.3	70
26	Lineage diversification of fringe-toed lizards (Phrynosomatidae: Uma notata complex) in the Colorado Desert: Delimiting species in the presence of gene flow. Molecular Phylogenetics and Evolution, 2017, 106, 103-117.	2.7	28
27	Inactivation of Cone-Specific Phototransduction Genes in Rod Monochromatic Cetaceans. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	27
28	Biases of tree-independent-character-subsampling methods. Molecular Phylogenetics and Evolution, 2016, 100, 424-443.	2.7	11
29	Inactivation of C4orf26 in toothless placental mammals. Molecular Phylogenetics and Evolution, 2016, 95, 34-45.	2.7	45
30	The effects of subsampling gene trees on coalescent methods applied to ancient divergences. Molecular Phylogenetics and Evolution, 2016, 97, 76-89.	2.7	45
31	The gene tree delusion. Molecular Phylogenetics and Evolution, 2016, 94, 1-33.	2.7	259
32	Interordinal gene capture, the phylogenetic position of Steller $\hat{a} \in \mathbb{T}^M$ s sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia. Molecular Phylogenetics and Evolution, 2015, 91, 178-193.	2.7	75
33	Coalescence vs. concatenation: Sophisticated analyses vs. first principles applied to rooting the angiosperms. Molecular Phylogenetics and Evolution, 2015, 91, 98-122.	2.7	77
34	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	12.6	895
35	Land plant origins and coalescence confusion. Trends in Plant Science, 2014, 19, 267-269.	8.8	61
36	Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends in Ecology and Evolution, 2014, 29, 336-346.	8.7	105

#	Article	IF	CITATIONS
37	Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Molecular Phylogenetics and Evolution, 2014, 80, 231-266.	2.7	286
38	Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes. BMC Evolutionary Biology, 2013, 13, 20.	3.2	53
39	A phylogenetic blueprint for a modern whale. Molecular Phylogenetics and Evolution, 2013, 66, 479-506.	2.7	200
40	THE EVOLUTIONARY HISTORY OF CETACEAN BRAIN AND BODY SIZE. Evolution; International Journal of Organic Evolution, 2013, 67, 3339-3353.	2.3	94
41	Rod Monochromacy and the Coevolution of Cetacean Retinal Opsins. PLoS Genetics, 2013, 9, e1003432.	3.5	118
42	Concatenation versus coalescence versus "concatalescence― Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1179.	7.1	95
43	Response to Comment on "Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification― Science, 2012, 337, 34-34.	12.6	2
44	Macroevolutionary Dynamics and Historical Biogeography of Primate Diversification Inferred from a Species Supermatrix. PLoS ONE, 2012, 7, e49521.	2.5	447
45	Pseudogenization of the tooth gene enamelysin (<i>MMP20</i>) in the common ancestor of extant baleen whales. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 993-1002.	2.6	79
46	A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: Evidence for a trans-Atlantic voyage from Africa to the New World. Molecular Phylogenetics and Evolution, 2011, 60, 183-191.	2.7	82
47	Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. Science, 2011, 334, 521-524.	12.6	1,264
48	A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evolutionary Biology, 2011, 11, 112.	3.2	171
49	Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1) in cetaceans. BMC Evolutionary Biology, 2011, 11, 98.	3.2	24
50	Nuclear–Mitochondrial Sequences as Witnesses of Past Interbreeding and Population Diversity in the Jumping Bristletail Mesomachilis. Molecular Biology and Evolution, 2011, 28, 195-210.	8.9	30
51	Molecular Decay of the Tooth Gene Enamelin (ENAM) Mirrors the Loss of Enamel in the Fossil Record of Placental Mammals. PLoS Genetics, 2009, 5, e1000634.	3.5	133
52	Evolution and phylogenetic utility of the melanocortin-1 receptor gene (MC1R) in Cetartiodactyla. Molecular Phylogenetics and Evolution, 2009, 52, 550-557.	2.7	18
53	Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Molecular Phylogenetics and Evolution, 2009, 53, 891-906.	2.7	337
54	Relationships of Cetacea (Artiodactyla) Among Mammals: Increased Taxon Sampling Alters Interpretations of Key Fossils and Character Evolution. PLoS ONE, 2009, 4, e7062.	2.5	166

#	Article	IF	CITATIONS
55	The rapid accumulation of consistent molecular support for intergeneric crocodylian relationships. Molecular Phylogenetics and Evolution, 2008, 48, 1232-1237.	2.7	21
56	Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics, 2008, 24, 397-442.	3.3	95
57	Morphological and Molecular Evidence for a Stepwise Evolutionary Transition from Teeth to Baleen in Mysticete Whales. Systematic Biology, 2008, 57, 15-37.	5.6	238
58	The Vestigial Olfactory Receptor Subgenome of Odontocete Whales: Phylogenetic Congruence between Gene-Tree Reconciliation and Supermatrix Methods. Systematic Biology, 2008, 57, 574-590.	5.6	82
59	How Many Genes Should a Systematist Sample? Conflicting Insights from a Phylogenomic Matrix Characterized by Replicated Incongruence. Systematic Biology, 2007, 56, 355-363.	5.6	80
60	The supermatrix approach to systematics. Trends in Ecology and Evolution, 2007, 22, 34-41.	8.7	375
61	Adaptive Evolution and Phylogenetic Utility ofAcr(Acrosin), a Rapidly Evolving Mammalian Fertilization Gene. Journal of Mammalogy, 2007, 88, 32-42.	1.3	10
62	Hidden Likelihood Support in Genomic Data: Can Forty-Five Wrongs Make a Right?. Systematic Biology, 2005, 54, 483-492.	5.6	136
63	A Critique of Matrix Representation with Parsimony Supertrees. Computational Biology, 2004, , 369-388.	0.2	42
64	Inconsistencies in Arguments for the Supertree Approach: Supermatrices versus Supertrees of Crocodylia. Systematic Biology, 2004, 53, 342-355.	5.6	101
65	Combined Support for Wholesale Taxic Atavism in Gavialine Crocodylians. Systematic Biology, 2003, 52, 403-422.	5.6	176
66	Are the Dental Data Really at Odds with the Molecular Data? Morphological Evidence for Whale Phylogeny (Re)Reexamined. Systematic Biology, 2003, 52, 853-864.	5.6	32
67	Resolution of a Supertree/Supermatrix Paradox. Systematic Biology, 2002, 51, 652-664.	5.6	190
68	Is morphology still relevant?., 2002, , 163-174.		46
69	Relative quality of different systematic datasets for cetartiodactyl mammals: assessments within a combined analysis framework., 2002,, 45-67.		9
70	Deciphering whale origins with molecules and fossils. Trends in Ecology and Evolution, 2001, 16, 562-570.	8.7	103
71	Hidden Morphological Support for the Phylogenetic Placement of Pseudoryx nghetinhensis with Bovine Bovids: A Combined Analysis of Gross Anatomical Evidence and DNA Sequences from Five Genes. Systematic Biology, 2000, 49, 515-538.	5.6	76
72	Linked Branch Support and Tree Stability. Systematic Biology, 2000, 49, 800-807.	5.6	24

#	Article	IF	CITATION
73	Stability of Cladistic Relationships between Cetacea and Higher-Level Artiodactyl Taxa. Systematic Biology, 1999, 48, 6-20.	5.6	164
74	Corroboration among Data Sets in Simultaneous Analysis: Hidden Support for Phylogenetic Relationships among Higher Level Artiodactyl Taxa. Cladistics, 1999, 15, 271-313.	3.3	288
75	Corroboration among Data Sets in Simultaneous Analysis: Hidden Support for Phylogenetic Relationships among Higher Level Artiodactyl Taxa. Cladistics, 1999, 15, 271-313.	3.3	69
76	Molecular Evidence for the Phylogenetic Affinities of Cetacea. , 1998, , 63-111.		54
77	PCR assays of variable nucleotide sites for identification of conservation units: n example from Caiman., 1998,, 177-190.		8
78	A Cladistic Analysis of Mitochondrial Ribosomal DNA from the Bovidae. Molecular Phylogenetics and Evolution, 1997, 7, 303-319.	2.7	134
79	Elision: A Method for Accommodating Multiple Molecular Sequence Alignments with Alignment-Ambiguous Sites. Molecular Phylogenetics and Evolution, 1995, 4, 1-9.	2.7	145
80	Rate Limits for Mispairing and Compensatory Change: The Mitochondrial Ribosomal DNA of Antelopes. Evolution; International Journal of Organic Evolution, 1994, 48, 188.	2.3	8
81	Alignment-Ambiguous Nucleotide Sites and the Exclusion of Systematic Data. Molecular Phylogenetics and Evolution, 1993, 2, 152-157.	2.7	323
82	Sequence Similarity of 12S Ribosomal Segment of Mitochondrial DNAs of Gharial and False Gharial. Copeia, 1992, 1992, 241.	1.3	40
83	Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. Open Research Europe, 0, 1, 75.	2.0	3
84	Genomic evidence for the parallel regression of melatonin synthesis and signaling pathways in placental mammals. Open Research Europe, 0, 1, 75.	2.0	2