Paul Aljabar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10499123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage, 2006, 33, 115-126.	4.2	794
2	Emergence of resting state networks in the preterm human brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20015-20020.	7.1	461
3	Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. Neurolmage, 2013, 65, 167-175.	4.2	376
4	Rich-club organization of the newborn human brain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7456-7461.	7.1	300
5	Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain. IEEE Transactions on Medical Imaging, 2014, 33, 1818-1831.	8.9	296
6	Development of cortical microstructure in the preterm human brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9541-9546.	7.1	293
7	The Effect of Preterm Birth on Thalamic and Cortical Development. Cerebral Cortex, 2012, 22, 1016-1024.	2.9	262
8	Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage, 2012, 59, 2255-2265.	4.2	259
9	Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiotherapy and Oncology, 2018, 126, 312-317.	0.6	256
10	A dynamic 4D probabilistic atlas of the developing brain. NeuroImage, 2011, 54, 2750-2763.	4.2	247
11	Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. NeuroImage, 2006, 32, 70-78.	4.2	220
12	LEAP: Learning embeddings for atlas propagation. NeuroImage, 2010, 49, 1316-1325.	4.2	216
13	The influence of preterm birth on the developing thalamocortical connectome. Cortex, 2013, 49, 1711-1721.	2.4	202
14	Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage, 2017, 149, 379-392.	4.2	187
15	An evaluation of four automatic methods of segmenting the subcortical structures in the brain. NeuroImage, 2009, 47, 1435-1447.	4.2	180
16	Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. NeuroImage, 2010, 51, 221-227.	4.2	174
17	Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Medical Physics, 2018, 45, 4568-4581.	3.0	169
18	Regional growth and atlasing of the developing human brain. NeuroImage, 2016, 125, 456-478.	4.2	167

PAUL ALJABAR

#	Article	IF	CITATIONS
19	Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiotherapy and Oncology, 2020, 142, 115-123.	0.6	141
20	Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease. NeuroImage, 2012, 60, 221-229.	4.2	136
21	Measurement of hippocampal atrophy using 4D graph-cut segmentation: Application to ADNI. NeuroImage, 2010, 52, 109-118.	4.2	122
22	Automatic morphometry in Alzheimer's disease and mild cognitive impairment. NeuroImage, 2011, 56, 2024-2037.	4.2	120
23	Decreased microglial Wnt/ \hat{l}^2 -catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	7.6	97
24	Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: A proof-of-principle study. NeuroImage, 2007, 36, 38-47.	4.2	91
25	Early growth in brain volume is preserved in the majority of preterm infants. Annals of Neurology, 2007, 62, 185-192.	5.3	89
26	Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI. NeuroImage: Clinical, 2018, 17, 596-606.	2.7	87
27	A 4D neonatal head model for diffuse optical imaging of pre-term to term infants. Neurolmage, 2014, 100, 385-394.	4.2	61
28	Multimodal image analysis of clinical influences on preterm brain development. Annals of Neurology, 2017, 82, 233-246.	5.3	61
29	Cerebral atrophy measurements using Jacobian integration: Comparison with the boundary shift integral. NeuroImage, 2006, 32, 159-169.	4.2	60
30	Resting State fMRI in the moving fetus: A robust framework for motion, bias field and spin history correction. NeuroImage, 2014, 101, 555-568.	4.2	60
31	Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation. PLoS ONE, 2012, 7, e33096.	2.5	59
32	Comparative evaluation of autocontouring in clinical practice: A practical method using the Turing test. Medical Physics, 2018, 45, 5105-5115.	3.0	58
33	Classifier Selection Strategies for Label Fusion Using Large Atlas Databases. , 2007, 10, 523-531.		53
34	Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Medical Image Analysis, 2012, 16, 819-830.	11.6	50
35	Temporal sparse free-form deformations. Medical Image Analysis, 2013, 17, 779-789.	11.6	50
36	Modelling brain development to detect white matter injury in term and preterm born neonates. Brain, 2020, 143, 467-479.	7.6	44

3

PAUL ALJABAR

#	Article	IF	CITATIONS
37	Common Genetic Variants and Risk of Brain Injury After Preterm Birth. Pediatrics, 2014, 133, e1655-e1663.	2.1	43
38	Brain Extraction Using Label Propagation and Group Agreement: Pincram. PLoS ONE, 2015, 10, e0129211.	2.5	43
39	Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants. Journal of Pediatrics, 2016, 178, 93-100.e6.	1.8	42
40	Language ability in preterm children is associated with arcuate fasciculi microstructure at term. Human Brain Mapping, 2017, 38, 3836-3847.	3.6	40
41	A tract-specific approach to assessing white matter in preterm infants. NeuroImage, 2017, 157, 675-694.	4.2	35
42	Groupwise Combined Segmentation and Registration for Atlas Construction. , 2007, 10, 532-540.		34
43	Manifold Learning for Medical Image Registration, Segmentation, and Classification. Advances in Bioinformatics and Biomedical Engineering Book Series, 2012, , 351-372.	0.4	30
44	Machine learning shows association between genetic variability in <i>PPARG</i> and cerebral connectivity in preterm infants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13744-13749.	7.1	29
45	A multimodal spatiotemporal cardiac motion atlas from MR and ultrasound data. Medical Image Analysis, 2017, 40, 96-110.	11.6	27
46	Multi-class brain segmentation using atlas propagation and EM-based refinement. , 2012, , .		20
47	Manifold Learning for Biomarker Discovery in MR Imaging. Lecture Notes in Computer Science, 2010, , 116-123.	1.3	16
48	Regional analysis of FDG-PET for use in the classification of Alzheimer'S Disease. , 2011, , .		16
49	Random Forest-Based Manifold Learning for Classification of Imaging Data in Dementia. Lecture Notes in Computer Science, 2011, , 159-166.	1.3	16
50	Multi-atlas Segmentation as a Graph Labelling Problem: Application to Partially Annotated Atlas Data. Lecture Notes in Computer Science, 2015, 24, 221-232.	1.3	13
51	Large dynamic range relative B1+ mapping. Magnetic Resonance in Medicine, 2016, 76, 490-499.	3.0	13
52	LISA: Longitudinal image registration via spatio-temporal atlases. , 2012, , .		11
53	Tracking developmental changes in subcortical structures of the preterm brain using multi-modal MRI. , 2011, , .		8
54	Multi-Atlas Segmentation Using Partially Annotated Data: Methods and Annotation Strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40, 1683-1696.	13.9	8

Paul Aljabar

#	Article	IF	CITATIONS
55	Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information. , 2009, , .		7
56	Towards dense motion estimation in light and electron microscopy. , 2011, , .		6
57	Manifold learning combining imaging with non-imaging information. , 2011, , .		6
58	Graph-Based Label Propagation in Fetal Brain MR Images. Lecture Notes in Computer Science, 2014, , 9-16.	1.3	6
59	Unsupervised Learning of Shape Complexity: Application to Brain Development. Lecture Notes in Computer Science, 2012, , 88-99.	1.3	6
60	Multiview Machine Learning Using anÂAtlas of Cardiac Cycle Motion. Lecture Notes in Computer Science, 2018, , 3-11.	1.3	3
61	Normalisation of Neonatal Brain Network Measures Using Stochastic Approaches. Lecture Notes in Computer Science, 2013, 16, 574-581.	1.3	2
62	Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan. , 2009, , .		1
63	Spectral Clustering as a Diagnostic Tool in Cross-Sectional MR Studies: An Application to Mild Dementia. Lecture Notes in Computer Science, 2008, 11, 442-449.	1.3	1
64	Measuring atrophy by simultaneous segmentation of serial MR images using 4-D graph-cuts. , 2010, , .		0
65	A repository of MR morphometry data in Alzheimer's disease and mild cognitive impairment. , 2011, , .		Ο
66	Construction of a 4D atlas of the developing brain using non-rigid registration. , 2011, , .		0
67	Learning and Combining Image Similarities for Neonatal Brain Population Studies. Lecture Notes in Computer Science, 2015, , 110-117.	1.3	0