
Reinhold Wannemacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1049259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Waterâ€Soluble Organic Photocatalyst Discovered for Highly Efficient Additiveâ€Free Visibleâ€Lightâ€Driven Grafting of Polymers from Proteins at Ambient and Aqueous Environments. Advanced Materials, 2022, 34, e2108446.	21.0	22
2	Electrical control of Förster resonant energy transfer across single-layer graphene. Nanophotonics, 2022, 11, 3247-3256.	6.0	0
3	Nuclearity Control for Efficient Thermally Activated Delayed Fluorescence in a Cu ^I Complex and its Halogen-Bridged Dimer. Chemistry of Materials, 2021, 33, 6383-6393.	6.7	12
4	On the nature of solvothermally synthesized carbon nanodots. Journal of Materials Chemistry C, 2021, 9, 16935-16944.	5.5	11
5	Turn-on solid state luminescence by solvent-induced modification of intermolecular interactions. Journal of Materials Chemistry C, 2020, 8, 15742-15750.	5.5	10
6	Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal–Organic Frameworks for Highly Sensitive NO ₂ Sensors. Journal of Physical Chemistry Letters, 2020, 11, 3362-3368.	4.6	50
7	Organic Photocatalyst for ppm-Level Visible-Light-Driven Reversible Addition–Fragmentation Chain-Transfer (RAFT) Polymerization with Excellent Oxygen Tolerance. Macromolecules, 2019, 52, 5538-5545.	4.8	56
8	Flexible distributed feedback lasers based on nanoimprinted cellulose diacetate with efficient multiple wavelength lasing. Npj Flexible Electronics, 2019, 3, .	10.7	22
9	Assembly-Induced Bright-Light Emission from Solution-Processed Platinum(II) Inorganic Polymers. ACS Omega, 2019, 4, 10192-10204.	3.5	6
10	Fluorescent C-NanoDots for rapid detection of BRCA1, CFTR and MRP3 gene mutations. Mikrochimica Acta, 2019, 186, 293.	5.0	8
11	Carbon nanodots based biosensors for gene mutation detection. Sensors and Actuators B: Chemical, 2018, 256, 226-233.	7.8	76
12	Amplified spontaneous emission in action: Sub-ppm optical detection of acid vapors in poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] thin films. Sensors and Actuators B: Chemical, 2018, 255, 1354-1361.	7.8	11
13	Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nature Catalysis, 2018, 1, 794-804.	34.4	124
14	Interfacial charge transfer in functionalized multi-walled carbon nanotube@TiO ₂ nanofibres. Nanoscale, 2017, 9, 7911-7921.	5.6	71
15	Polymorphism and Amplified Spontaneous Emission in a Dicyanoâ€Đistyrylbenzene Derivative with Multiple Trifluoromethyl Substituents: Intermolecular Interactions in Play. Advanced Functional Materials, 2016, 26, 2349-2356.	14.9	46
16	Flexible all-polymer waveguide for low threshold amplified spontaneous emission. Scientific Reports, 2016, 6, 34565.	3.3	26
17	Controlled Suppression of Wear on the Nanoscale by Ultrasonic Vibrations. ACS Nano, 2015, 9, 8859-8868.	14.6	17
18	Excited State Features and Dynamics in a Distyrylbenzene-Based Mixed Stack Donor–Acceptor Cocrystal with Luminescent Charge Transfer Characteristics. Journal of Physical Chemistry Letters, 2015, 6, 3682-3687.	4.6	44

#	Article	IF	CITATIONS
19	The effect of oxygen induced degradation on charge carrier dynamics in P3HT:PCBM and Si-PCPDTBT:PCBM thin films and solar cells. Journal of Materials Chemistry A, 2015, 3, 3399-3408.	10.3	42
20	Orthogonal Resonator Modes and Low Lasing Threshold in Highly Emissive Distyrylbenzeneâ€Based Molecular Crystals. Advanced Optical Materials, 2014, 2, 542-548.	7.3	32
21	Velocity dependence of nano-abrasive wear of amorphous polymers obtained using a spiral scan pattern. Polymer, 2013, 54, 3620-3623.	3.8	1
22	Colorâ€Tuned, Highly Emissive Dicyanodistyrylbenzene Single Crystals: Manipulating Intermolecular Stacking Interactions for Spontaneous and Stimulated Emission Characteristics. Advanced Optical Materials, 2013, 1, 232-237.	7.3	86
23	Stimulated Emission Properties of Sterically Modified Distyrylbenzene-Based H-Aggregate Single Crystals. Journal of Physical Chemistry Letters, 2013, 4, 1597-1602.	4.6	71
24	Ultrafast spectroscopy of linear carbon chains: the case of dinaphthylpolyynes. Physical Chemistry Chemical Physics, 2013, 15, 9384.	2.8	15
25	Stimulated Resonance Raman Scattering and Laser Oscillation in Highly Emissive Distyrylbenzeneâ€Based Molecular Crystals. Advanced Materials, 2012, 24, 6473-6478.	21.0	62
26	Spectroscopic Signature of Trap States in Assembled CdSe Nanocrystal Hybrid Films. Journal of Physical Chemistry C, 2012, 116, 16259-16263.	3.1	9
27	Ultra-High Resolution Thin Film Thickness Delineation Using Reflection Phase-Sensitive Acoustic Microscopy. Acoustical Imaging, 2011, , 125-134.	0.2	2
28	Modeling of Coulomb coupling and acoustic wave propagation in LiNbO3. Ultrasonics, 2008, 48, 583-586.	3.9	1
29	A differential method for the determination of the time-of-flight for ultrasound under pulsed wide band excitation including chirped signals. Proceedings of SPIE, 2008, , .	0.8	7
30	Comparative evaluation of ultrasonic lenses and electric point contacts for acoustic flux imaging in piezoelectric single crystals. , 2008, , .		0
31	Determination of mechanical properties of layered materials with vector-contrast scanning acoustic microscopy by polar diagram image representation. Proceedings of SPIE, 2008, , .	0.8	3
32	The influence of the radius of the electrodes employed in Coulomb excitation of acoustic waves in piezoelectric materials. , 2007, , .		6
33	Combinatory scanning confocal laser and acoustic vector contrast microscopy: multi-contrast imaging of soft matter samples. , 2006, , .		0
34	Characterization of malaria infected blood cells by scanning confocal laser and acoustic vector contrast microscopy. , 2006, , .		0
35	Application of spatially and temporally apodized non-confocal acoustic transmission microscopy to imaging of directly bonded wafers. Ultrasonics, 2006, 44, 54-63.	3.9	6
36	Combined surface-focused acoustic microscopy in transmission and scanning ultrasonic holography. Ultrasonics, 2006, 44, e1301-e1305.	3.9	7

Reinhold Wannemacher

#	Article	IF	CITATIONS
37	Combined phase-sensitive acoustic microscopy and confocal laser scanning microscopy. Ultrasonics, 2006, 44, e1295-e1300.	3.9	6
38	Acoustic holography of piezoelectric materials by Coulomb excitation. , 2006, , .		7
39	<title>NDT of wafer direct bonding by non-confocal transmission phase sensitive acoustic microscopy</title> . , 2005, 5768, 204.		1
40	Photonic molecules doped with semiconductor nanocrystals. Physical Review B, 2004, 70, .	3.2	58
41	Phase-sensitive acoustic microscopy of polymer thin films. Ultrasonics, 2004, 42, 983-987.	3.9	2
42	Voronoi Tessellations in Thin Polymer Blend Films. Macromolecules, 2004, 37, 1691-1692.	4.8	10
43	Photonic molecules doped with quantum dots. , 2004, , .		Ο
44	Dot-in-a-dot: electronic and photonic confinement in all three dimensions. Applied Physics B: Lasers and Optics, 2003, 77, 469-484.	2.2	42
45	Apertureless near-field optical microscopy of metallic nanoparticles. Ultramicroscopy, 2003, 94, 109-123.	1.9	12
46	Mode control by nanoengineering light emitters in spherical microcavities. Applied Physics Letters, 2003, 83, 2686-2688.	3.3	35
47	Phase-sensitive acoustic imaging and micro-metrology of polymer blend thin films. Europhysics Letters, 2003, 64, 830-836.	2.0	8
48	Mode identification in spherical microcavities doped with quantum dots. Applied Physics Letters, 2002, 80, 3253-3255.	3.3	28
49	Optical near-field effects in surface nanostructuring and laser cleaning. , 2002, , .		27
50	Propagation of femtosecond light pulses through near-field optical aperture probes. Ultramicroscopy, 2002, 92, 251-264.	1.9	16
51	Laser microstructuring and scanning microscopy of plasmapolymer–silver composite layers. Applied Optics, 2001, 40, 5726.	2.1	6
52	Light Trapped in a Photonic Dot:  Microspheres Act as a Cavity for Quantum Dot Emission. Nano Letters, 2001, 1, 309-314.	9.1	164
53	Microscopy of ion-beam generated fluorescent color-center patterns in LiF. Optics Communications, 2001, 188, 119-128.	2.1	28
54	Failure of local Mie theory: optical spectra of colloidal aggregates. Optics Communications, 2001, 194, 277-287.	2.1	64

#	Article	IF	CITATIONS
55	Plasmon-supported transmission of light through nanometric holes in metallic thin films. Optics Communications, 2001, 195, 107-118.	2.1	112
56	Photons confined in hollow microspheres. Applied Physics Letters, 2001, 78, 1032-1034.	3.3	56
57	Preparation of Silverâ^'Latex Composites. Journal of Physical Chemistry B, 2000, 104, 7278-7285.	2.6	174
58	Generation and detection of fluorescent color centers in diamond with submicron resolution. Applied Physics Letters, 1999, 75, 3096-3098.	3.3	75
59	Evanescent-wave scattering in near-field optical microscopy. Journal of Microscopy, 1999, 194, 260-264.	1.8	18
60	Confocal microscopy of color center distributions in diamond. Journal of Luminescence, 1999, 83-84, 493-497.	3.1	11
61	Scattering and extinction of evanescent waves by small particles. Applied Physics B: Lasers and Optics, 1999, 68, 87-92.	2.2	84
62	Resonant absorption and scattering in evanescent fields. Applied Physics B: Lasers and Optics, 1999, 68, 225-232.	2.2	36
63	Near-field Raman spectroscopy of semiconductor heterostructures and CVD-diamond layers. Journal of Luminescence, 1998, 76-77, 306-309.	3.1	15
64	Permanent and microsecond transient hole-burning in free-base tetraphenylporphin using a quantum-well diode laser. Journal of Luminescence, 1997, 72-74, 544-545.	3.1	1
65	Spectral Diffusion in Organic Glasses:Â Time Dependence of Spectral Holes. The Journal of Physical Chemistry, 1996, 100, 19945-19953.	2.9	28
66	Nuclear magnetic resonance ofCo2+inLiGa5O8detected by optical spectral hole burning. Physical Review B, 1995, 51, 8764-8769.	3.2	1
67	Dynamics of spectral holes in rare-earth-doped glass fibers. Journal of Luminescence, 1994, 60-61, 437-440.	3.1	11
68	Spectral diffusion in organic glasses. Temperature dependence of permanent and transient holes. Chemical Physics Letters, 1993, 206, 1-8.	2.6	38
69	Blue continuously pumped upconversion lasing in Tm:YLiF4. Applied Physics Letters, 1992, 60, 2592-2594.	3.3	122
70	Optical dephasing of paramagnetic ions: Er3+ : YLiF4 — experiments and computer simulations. Journal of Luminescence, 1992, 53, 1-6.	3.1	15
71	Transient hole-burning with a diode laser: a study of bacteriochlorophyll-a in a glass on a microsecond time scale. Journal of Luminescence, 1992, 53, 266-270.	3.1	15
72	Nuclear spin-flip sidebands in optical spectral holeburning and fluorescence line narrowing of the Er3+ ion. Journal of Luminescence, 1991, 48-49, 309-312.	3.1	15

Reinhold Wannemacher

#	Article	IF	CITATIONS
73	Nonexponential photon echo decay of Er3+ in fluorides. Journal of Luminescence, 1991, 48-49, 313-317.	3.1	18
74	Direct observation of migration of optical excitation energy in YAG: Tb3+. Journal of Luminescence, 1990, 47, 169-175.	3.1	9
75	Zeeman-switched optical free induction decay in YLiF4:Er3+. Journal of Luminescence, 1990, 45, 431-433.	3.1	6
76	Electronically resonant optical cross relaxation in YAG: Tb3+. Journal of Luminescence, 1990, 47, 159-167.	3.1	30
77	Time-resolved spectral holeburning in LaF3:Ho3+ and YLiF4:Er3+. Journal of Luminescence, 1990, 45, 307-309.	3.1	14
78	Blue and green cw upconversion lasing in Er:YLiF4. Applied Physics Letters, 1990, 57, 1727-1729.	3.3	155
79	Zeeman-switched optical-free-induction decay and dephasing inYLiF4:Er3+. Physical Review B, 1989, 40, 4237-4242.	3.2	10
80	High-resolution spectroscopy of the 4T2 state of Cr3+ in LiCaAlF6. Journal of Luminescence, 1989, 43, 251-260.	3.1	17
81	Electronic antiâ€Stokes Raman scattering at Cr3+ single ions and ion pairs in optically excited states. Journal of Chemical Physics, 1988, 88, 4660-4663.	3.0	1
82	Cooperative emission of photons by weakly coupled chromium ions in YAG and LaAlO3. Journal of Luminescence, 1987, 39, 49-56.	3.1	7
83	Cooperative emission of photons by weakly coupled chromium ions in Al2O3. European Physical Journal B, 1987, 65, 491-501.	1.5	6

84 Photons confined in 3D-microcavities doped with quantum dots. , 0, , .

0