Michael J Plewa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10490958/publications.pdf Version: 2024-02-01

171 papers	14,312 citations	28274 55 h-index	²⁰³⁵⁸ 116 g-index
171	171	171	7234
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	lodoacetic acid exposure alters the transcriptome in mouse ovarian antral follicles. Journal of Environmental Sciences, 2022, 117, 46-57.	6.1	5
2	Preferential Halogenation of Algal Organic Matter by lodine over Chlorine and Bromine: Formation of Disinfection Byproducts and Correlation with Toxicity of Disinfected Waters. Environmental Science & Technology, 2022, 56, 1244-1256.	10.0	27
3	Formation of Oleic Acid Chlorohydrins in Vegetables during Postharvest Chlorine Disinfection. Environmental Science & Technology, 2022, 56, 1233-1243.	10.0	6
4	Drivers of Disinfection Byproduct Cytotoxicity in U.S. Drinking Water: Should Other DBPs Be Considered for Regulation?. Environmental Science & amp; Technology, 2022, 56, 392-402.	10.0	77
5	Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide. Journal of Environmental Sciences, 2022, 117, 151-160.	6.1	17
6	Relationships between regulated DBPs and emerging DBPs of health concern in U.S. drinking water. Journal of Environmental Sciences, 2022, 117, 161-172.	6.1	10
7	Effects of prenatal and lactational exposure to iodoacetic acid on the F1 generation of mice. Biology of Reproduction, 2022, 107, 650-663.	2.7	1
8	Feel the Burn: Disinfection Byproduct Formation and Cytotoxicity during Chlorine Burn Events. Environmental Science & Technology, 2022, 56, 8245-8254.	10.0	10
9	Making Swimming Pools Safer: Does Copper–Silver Ionization with Chlorine Lower the Toxicity and Disinfection Byproduct Formation?. Environmental Science & Technology, 2021, 55, 2908-2918.	10.0	36
10	In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. Science of the Total Environment, 2021, 768, 144750.	8.0	11
11	lodoacetic acid affects estrous cyclicity, ovarian gene expression, and hormone levels in mice. Biology of Reproduction, 2021, 105, 1030-1042.	2.7	21
12	Comparison of Estrogenic, Spectroscopic, and Toxicological Analyses of Pilot-Scale Water, Wastewaters, and Processed Wastewaters at Select Military Installations. Environmental Science & Technology, 2021, 55, 13103-13112.	10.0	2
13	Chloramination of iopamidol- and bromide-spiked waters containing natural organic matter. Water Science and Technology: Water Supply, 2021, 21, 886-898.	2.1	2
14	lodoacetic acid inhibits follicle growth and alters expression of genes that regulate apoptosis, the cell cycle, estrogen receptors, and ovarian steroidogenesis in mouse ovarian follicles. Reproductive Toxicology, 2020, 91, 101-108.	2.9	29
15	Disinfection byproducts and halogen-specific total organic halogen speciation in chlorinated source waters – The impact of iopamidol and bromide. Journal of Environmental Sciences, 2020, 89, 90-101.	6.1	17
16	Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. Water Research, 2020, 184, 116145.	11.3	33
17	Composite toxicity assays for enhanced assessment of decentralized potable reuse systems. Environmental Science: Water Research and Technology, 2020, 6, 3306-3315.	2.4	5
18	Comparative Quantitative Toxicology and QSAR Modeling of the Haloacetonitriles: Forcing Agents of Water Disinfection Byproduct Toxicity. Environmental Science & Technology, 2020, 54, 8909-8918.	10.0	72

#	Article	IF	CITATIONS
19	High-Resolution Mass Spectrometry Identification of Novel Surfactant-Derived Sulfur-Containing Disinfection Byproducts from Gas Extraction Wastewater. Environmental Science & Technology, 2020, 54, 9374-9386.	10.0	27
20	Influence of Anaerobic Mesophilic and Thermophilic Digestion on Cytotoxicity of Swine Wastewaters. Environmental Science & Technology, 2020, 54, 3032-3038.	10.0	9
21	To regulate or not to regulate? What to do with more toxic disinfection by-products?. Journal of Environmental Chemical Engineering, 2020, 8, 103939.	6.7	120
22	Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in Potable Reuse and Conventional Drinking Waters. Environmental Science & Technology, 2020, 54, 5729-5736.	10.0	102
23	Chloramination of iodide-containing waters: Formation of iodinated disinfection byproducts and toxicity correlation with total organic halides of treated waters. Science of the Total Environment, 2019, 697, 134142.	8.0	33
24	Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa. Water Research, 2019, 162, 115-126.	11.3	30
25	Toxicological Comparison of Water, Wastewaters, and Processed Wastewaters. Environmental Science & Technology, 2019, 53, 9139-9147.	10.0	44
26	Fate and transport of estrogenic compounds in an integrated swine manure treatment systems combining algal-bacterial bioreactor and hydrothermal processes for improved water quality. Environmental Science and Pollution Research, 2019, 26, 16800-16813.	5.3	7
27	Water Disinfection Byproducts Increase Natural Transformation Rates of Environmental DNA in <i>Acinetobacter baylyi</i> ADP1. Environmental Science & amp; Technology, 2019, 53, 6520-6528.	10.0	76
28	Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. Environmental Health Perspectives, 2019, 127, 117006.	6.0	21
29	Predominant <i>N</i> -Haloacetamide and Haloacetonitrile Formation in Drinking Water via the Aldehyde Reaction Pathway. Environmental Science & Technology, 2019, 53, 850-859.	10.0	34
30	Impact of chlorine exposure time on disinfection byproduct formation in the presence of iopamidol and natural organic matter during chloramination. Journal of Environmental Sciences, 2019, 78, 204-214.	6.1	9
31	Assessing the cytotoxicity of ambient particulate matter (PM) using Chinese hamster ovary (CHO) cells and its relationship with the PM chemical composition and oxidative potential. Atmospheric Environment, 2018, 179, 132-141.	4.1	28
32	Spectroscopic Indicators for Cytotoxicity of Chlorinated and Ozonated Effluents from Wastewater Stabilization Ponds and Activated Sludge. Environmental Science & Technology, 2018, 52, 3167-3174.	10.0	26
33	Haloacetic Acid Water Disinfection Byproducts Affect Pyruvate Dehydrogenase Activity and Disrupt Cellular Metabolism. Environmental Science & Technology, 2018, 52, 1525-1532.	10.0	32
34	Formation of DBPs and halogen-specific TOX in the presence of iopamidol and chlorinated oxidants. Chemosphere, 2018, 202, 349-357.	8.2	19
35	Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae. Water Research, 2018, 142, 313-324.	11.3	101
36	Chlorotyrosines versus Volatile Byproducts from Chlorine Disinfection during Washing of Spinach and Lettuce. Environmental Science & Technology, 2018, 52, 9361-9369.	10.0	22

#	Article	IF	CITATIONS
37	The impact of disinfection Ct values on cytotoxicity of agricultural wastewaters: Ozonation vs. chlorination. Water Research, 2018, 144, 482-490.	11.3	32
38	Thiol Reactivity Analyses To Predict Mammalian Cell Cytotoxicity of Water Samples. Environmental Science & Technology, 2018, 52, 8822-8829.	10.0	24
39	Comparative mammalian cell cytotoxicity of wastewater with elevated bromide and iodide after chlorination, chloramination, or ozonation. Journal of Environmental Sciences, 2017, 58, 296-301.	6.1	27
40	TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water. Journal of Environmental Sciences, 2017, 58, 208-216.	6.1	184
41	Chloramination of wastewater effluent: Toxicity and formation of disinfection byproducts. Journal of Environmental Sciences, 2017, 58, 135-145.	6.1	67
42	Investigation of nuclear enzyme topoisomerase as a putative molecular target of monohaloacetonitrile disinfection by-products. Journal of Environmental Sciences, 2017, 58, 231-238.	6.1	8
43	CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review. Journal of Environmental Sciences, 2017, 58, 64-76.	6.1	528
44	Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity. Journal of Environmental Sciences, 2017, 58, 224-230.	6.1	28
45	The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water. Journal of Environmental Sciences, 2017, 58, 173-182.	6.1	46
46	Identification and Comparative Mammalian Cell Cytotoxicity of New Iodo-Phenolic Disinfection Byproducts in Chloraminated Oil and Gas Wastewaters. Environmental Science and Technology Letters, 2017, 4, 475-480.	8.7	83
47	Toxicity of Wastewater with Elevated Bromide and Iodide after Chlorination, Chloramination, or Ozonation Disinfection. Environmental Science & Technology, 2017, 51, 9297-9304.	10.0	73
48	Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro. Reproductive Toxicology, 2016, 62, 71-76.	2.9	34
49	N-Nitrosamines and halogenated disinfection byproducts in U.S. Full Advanced Treatment trains for potable reuse. Water Research, 2016, 101, 176-186.	11.3	173
50	Energy of the Lowest Unoccupied Molecular Orbital, Thiol Reactivity, and Toxicity of Three Monobrominated Water Disinfection Byproducts. Environmental Science & Technology, 2016, 50, 3215-3221.	10.0	42
51	Comparative Mammalian Cell Cytotoxicity of Wastewaters for Agricultural Reuse after Ozonation. Environmental Science & amp; Technology, 2016, 50, 11752-11759.	10.0	35
52	Comparative Toxicity of High-Molecular Weight Iopamidol Disinfection Byproducts. Environmental Science and Technology Letters, 2016, 3, 81-84.	8.7	40
53	Analysis, Occurrence, and Toxicity of Haloacetaldehydes in Drinking Waters: Iodoacetaldehyde as an Emerging Disinfection By-Product. ACS Symposium Series, 2015, , 25-43.	0.5	6
54	Acetonitrile and <i>N</i> -Chloroacetamide Formation from the Reaction of Acetaldehyde and Monochloramine. Environmental Science & Technology, 2015, 49, 9954-9963.	10.0	29

#	Article	IF	CITATIONS
55	Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water. Environmental Science & Technology, 2015, 49, 13749-13759.	10.0	167
56	Charting a New Path To Resolve the Adverse Health Effects of DBPs. ACS Symposium Series, 2015, , 3-23.	0.5	39
57	<i>In Vitro</i> Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts. Chemical Research in Toxicology, 2015, 28, 2059-2068.	3.3	64
58	Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 770, 136-143.	1.0	26
59	Toxic Impact of Bromide and Iodide on Drinking Water Disinfected with Chlorine or Chloramines. Environmental Science & Technology, 2014, 48, 12362-12369.	10.0	215
60	Transformation of Iopamidol during Chlorination. Environmental Science & Technology, 2014, 48, 12689-12697.	10.0	127
61	Toxicity of Drinking Water Disinfection Byproducts: Cell Cycle Alterations Induced by the Monohaloacetonitriles. Environmental Science & Technology, 2014, 48, 11662-11669.	10.0	59
62	Comparative <i>in Vitro</i> Toxicity of Nitrosamines and Nitramines Associated with Amine-based Carbon Capture and Storage. Environmental Science & Technology, 2014, 48, 8203-8211.	10.0	50
63	Boiling of Simulated Tap Water: Effect on Polar Brominated Disinfection Byproducts, Halogen Speciation, and Cytotoxicity. Environmental Science & Technology, 2014, 48, 149-156.	10.0	108
64	Development and Performance Characterization of a Polyamide Nanofiltration Membrane Modified with Covalently Bonded Aramide Dendrimers. Environmental Science & Technology, 2013, 47, 130711065921008.	10.0	8
65	Chloroacetonitrile and <i>N</i> ,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water. Environmental Science & Technology, 2013, 47, 12382-12390.	10.0	51
66	Human Cell Toxicogenomic Analysis Linking Reactive Oxygen Species to the Toxicity of Monohaloacetic Acid Drinking Water Disinfection Byproducts. Environmental Science & Technology, 2013, 47, 12514-12523.	10.0	108
67	Genotoxic and clastogenic effects of monohaloacetic acid drinking water disinfection by-products in primary human lymphocytes. Water Research, 2013, 47, 3282-3290.	11.3	35
68	Chemical and Biological Characterization of Wastewater Generated from Hydrothermal Liquefaction of <i>Spirulina</i> . Environmental Science & amp; Technology, 2013, 47, 2131-2138.	10.0	149
69	Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection byâ€products. Environmental and Molecular Mutagenesis, 2013, 54, 629-637.	2.2	48
70	Cytotoxicity analysis of water disinfection byproducts with a micro-pillar microfluidic device. Lab on A Chip, 2012, 12, 3891.	6.0	4
71	Occurrence and Toxicity of Disinfection Byproducts in European Drinking Waters in Relation with the HIWATE Epidemiology Study. Environmental Science & Technology, 2012, 46, 12120-12128.	10.0	143
72	Measurement of Nitrosamine and Nitramine Formation from NO _{<i>x</i>} Reactions with Amines during Amine-Based Carbon Dioxide Capture for Postcombustion Carbon Sequestration. Environmental Science & Technology, 2012, 46, 9793-9801.	10.0	108

#	Article	IF	CITATIONS
73	Comparative genotoxicity of nitrosamine drinking water disinfection byproducts in Salmonella and mammalian cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 741, 109-115.	1.7	62
74	Differential Toxicity of Drinking Water Disinfected with Combinations of Ultraviolet Radiation and Chlorine. Environmental Science & 2017, Technology, 2012, 46, 7811-7817.	10.0	68
75	Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging. Environmental Science & Technology, 2011, 45, 6845-6854.	10.0	242
76	Biological Mechanism for the Toxicity of Haloacetic Acid Drinking Water Disinfection Byproducts. Environmental Science & Technology, 2011, 45, 5791-5797.	10.0	122
77	Comparative Mammalian Cell Cytotoxicity of Water Concentrates from Disinfected Recreational Pools. Environmental Science & amp; Technology, 2011, 45, 4159-4165.	10.0	74
78	Human cell toxicogenomic analysis of bromoacetic acid: A regulated drinking water disinfection byâ€product. Environmental and Molecular Mutagenesis, 2010, 51, 205-214.	2.2	31
79	Detecting Departure From Additivity Along aÂFixed-Ratio Mixture Ray With a Piecewise Model for Dose and Interaction Thresholds. Journal of Agricultural, Biological, and Environmental Statistics, 2010, 15, 510-522.	1.4	35
80	DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environmental and Molecular Mutagenesis, 2010, 51, 304-314.	2.2	156
81	Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection byâ€products. Environmental and Molecular Mutagenesis, 2010, 51, 871-878.	2.2	266
82	Genotoxicity of Water Concentrates from Recreational Pools after Various Disinfection Methods. Environmental Science & Technology, 2010, 44, 3527-3532.	10.0	111
83	Comparative Human Cell Toxicogenomic Analysis of Monohaloacetic Acid Drinking Water Disinfection Byproducts. Environmental Science & amp; Technology, 2010, 44, 7206-7212.	10.0	80
84	Comparison of Byproduct Formation in Waters Treated with Chlorine and Iodine: Relevance to Point-of-Use Treatment. Environmental Science & Technology, 2010, 44, 8446-8452.	10.0	111
85	Mammalian Cell DNA Damage and Repair Kinetics of Monohaloacetic Acid Drinking Water Disinfection By-Products. Environmental Science & Technology, 2009, 43, 8437-8442.	10.0	52
86	Chapter 3. Microplate-Based Comet Assay. Issues in Toxicology, 2009, , 79-97.	0.1	23
87	Occurrence, Synthesis, and Mammalian Cell Cytotoxicity and Genotoxicity of Haloacetamides: An Emerging Class of Nitrogenous Drinking Water Disinfection Byproducts. Environmental Science & Technology, 2008, 42, 955-961.	10.0	452
88	Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water. Environmental Science & Technology, 2008, 42, 8330-8338.	10.0	830
89	Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs. ACS Symposium Series, 2008, , 36-50.	0.5	164
90	Hydrogen Sulfide Induces Direct Radical-Associated DNA Damage. Molecular Cancer Research, 2007, 5, 455-459.	3.4	233

#	Article	IF	CITATIONS
91	Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research - Reviews in Mutation Research, 2007, 636, 178-242.	5.5	2,531
92	Testing for additivity in chemical mixtures using a fixed-ratio ray design and statistical equivalence testing methods. Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12, 514-533.	1.4	33
93	Haloacetonitriles vs. Regulated Haloacetic Acids:Â Are Nitrogen-Containing DBPs More Toxic?. Environmental Science & Technology, 2007, 41, 645-651.	10.0	597
94	Modulation of the Cytotoxicity and Genotoxicity of the Drinking Water Disinfection Byproduct Iodoacetic Acid by Suppressors of Oxidative Stress. Environmental Science & Technology, 2006, 40, 1878-1883.	10.0	104
95	Evidence That Hydrogen Sulfide Is a Genotoxic Agent. Molecular Cancer Research, 2006, 4, 9-14.	3.4	294
96	Modulation of the genotoxicity of pesticides reacted with redox-modified smectite clay. Environmental and Molecular Mutagenesis, 2005, 46, 174-181.	2.2	29
97	Evaluation of the nuclear DNA Diffusion Assay to detect apoptosis and necrosis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2005, 586, 38-46.	1.7	26
98	Alteration of Mammalian-Cell Toxicity of Pesticides by Structural Iron(II) in Ferruginous Smectite. Environmental Science & Technology, 2004, 38, 4383-4389.	10.0	15
99	Halonitromethane Drinking Water Disinfection Byproducts:Â Chemical Characterization and Mammalian Cell Cytotoxicity and Genotoxicity. Environmental Science & Technology, 2004, 38, 62-68.	10.0	446
100	Chemical and Biological Characterization of Newly Discovered Iodoacid Drinking Water Disinfection Byproducts. Environmental Science & amp; Technology, 2004, 38, 4713-4722.	10.0	433
101	The comet assay: Genotoxic damage or nuclear fragmentation?. Environmental and Molecular Mutagenesis, 2003, 42, 61-67.	2.2	90
102	Mutant spectra analysis athisC46 inSalmonella typhimurium strain YG1029 induced by mammalian S9- and plant-activated aromatic amines. Teratogenesis, Carcinogenesis, and Mutagenesis, 2003, 23, 47-60.	0.8	1
103	Evaluation of EMS-induced DNA damage in the single cell gel electrophoresis (Comet) assay and with flow cytometric analysis of micronuclei. Teratogenesis, Carcinogenesis, and Mutagenesis, 2003, 23, 1-11.	0.8	21
104	Tribromopyrrole, Brominated Acids, and Other Disinfection Byproducts Produced by Disinfection of Drinking Water Rich in Bromide. Environmental Science & amp; Technology, 2003, 37, 3782-3793.	10.0	247
105	Modulation of the mutagenicity of heterocyclic amines by organophosphate insecticides and their metabolites. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 536, 103-115.	1.7	15
106	Antimicrobial egg cleaning by the fringed darter (Perciformes: Percidae:Etheostoma crossopterum): implications of a novel component of parental care in fishes. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2405-2411.	2.6	54
107	Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environmental and Molecular Mutagenesis, 2002, 40, 134-142.	2.2	352
108	Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products inSalmonella typhimurium. Teratogenesis, Carcinogenesis, and Mutagenesis, 2002, 22, 113-128.	0.8	93

#	Article	IF	CITATIONS
109	Isolating antigenotoxic components and cancer cell growth suppressors from agricultural by-products. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 480-481, 109-120.	1.0	16
110	Differentiation of Total Organic Brominated and Chlorinated Compounds in Total Organic Halide Measurement: A New Approach with an Ion-Chromatographic Technique. ACS Symposium Series, 2000, , 330-342.	0.5	20
111	Characterization and Comparison of Disinfection By-Products of Four Major Disinfectants. ACS Symposium Series, 2000, , 299-314.	0.5	72
112	A New Assessment of the Cytotoxicity and Genotoxicity of Drinking Water Disinfection By-Products. ACS Symposium Series, 2000, , 16-27.	0.5	10
113	A comparison of DNA repair using the comet assay in tobacco seedlings after exposure to alkylating agents or ionizing radiation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2000, 470, 1-9.	1.7	60
114	Comparison of DNA damage in plants as measured by single cell gel electrophoresis and somatic leaf mutations induced by monofunctional alkylating agents. Environmental and Molecular Mutagenesis, 1999, 33, 279-286.	2.2	40
115	Antimutagenic activity of chemical fractions isolated from a commercial soybean processing by-product. Teratogenesis, Carcinogenesis, and Mutagenesis, 1999, 19, 121-135.	0.8	12
116	Induction of somatic DNA damage as measured by single cell gel electrophoresis and point mutation in leaves of tobacco plants. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 401, 143-152.	1.0	88
117	Single cell gel electrophoresis analysis of genomic damage induced by ethyl methanesulfonate in cultured tobacco cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 422, 323-330.	1.0	21
118	Analysis of mutagens with single cell gel electrophoresis, flow cytometry, and forward mutation assays in an isolated clone of Chinese hamster ovary cells. , 1998, 32, 360-368.		78
119	Pentachlorophenol-mediated mutagenic synergy with aromatic amines in Salmonella typhimurium. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1998, 420, 115-124.	1.7	7
120	Analysis of mutagens with single cell gel electrophoresis, flow cytometry, and forward mutation assays in an isolated clone of Chinese hamster ovary cells. Environmental and Molecular Mutagenesis, 1998, 32, 360-368.	2.2	2
121	Characterization of a macromolecular matrix isolated from tobacco suspension cell cultures and its role in the activation of promutagenic m-phenylenediamine. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 379, 191-199.	1.0	3
122	Plant-activation of the bicyclic aromatic amines benzidine and 4-aminobiphenyl. Environmental and Molecular Mutagenesis, 1997, 29, 81-90.	2.2	11
123	Mutagenic synergy between paraoxon and mammalian or plant-activated aromatic amines. Environmental and Molecular Mutagenesis, 1997, 30, 312-320.	2.2	8
124	Involvement of nitroreductase andO-acetyltransferase on the mutagenicity of plant-activated benzidine and 4-aminobiphenyl. , 1997, 30, 330-338.		3
125	Plant activation and its role in environmental mutagenesis and antimutagenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 350, 163-171.	1.0	17
126	Mutagenic analysis of 2,3-diaminophenazine and 2-amino-3-hydroxyphenazine in Salmonella strains expressing different levels of O-acetyltransferase with and without plant and mammalian activation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 372, 65-74.	1.0	9

#	Article	IF	CITATIONS
127	An investigation of some Turkish herbal medicines inSalmonella typhimurium and in the COMET assay in human lymphocytes. Teratogenesis, Carcinogenesis, and Mutagenesis, 1996, 16, 125-138.	0.8	50
128	Mutagenic synergy between paraoxon and plant-activatedm-phenylenediamine or 2-acetoxyacetylaminofluorene. Environmental and Molecular Mutagenesis, 1996, 27, 59-66.	2.2	6
129	An investigation of some Turkish herbal medicines in Salmonella typhimurium and in the COMET assay in human lymphocytes. Teratogenesis, Carcinogenesis, and Mutagenesis, 1996, 16, 125-138.	0.8	1
130	Genotoxicity ofm-phenylenediamine and 2-aminofluorene inSalmonella typhimurium and human lymphocytes with and without plant activation. Environmental and Molecular Mutagenesis, 1995, 26, 171-177.	2.2	18
131	Metabolic activation of m-phenylenediamine to products mutagenic in Salmonella typhimurium by medium isolated from tobacco suspension cell cultures. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1995, 331, 127-132.	1.0	19
132	Comparative mutagenicity of plant-activated aromatic amines usingsalmonella strains with different acetyltransferase activities. Environmental and Molecular Mutagenesis, 1994, 23, 64-69.	2.2	34
133	Induction of somatic mutations in Tradescantia clone 4430 by three phenylenediamine isomers and the antimutagenic mechanisms of diethylditiocarbamate and ammonium meta-vanadate. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 306, 165-172.	1.0	35
134	Antimutagenicity of three isomers of aminobenzoic acid in Salmonella typhimurium. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 309, 201-210.	1.0	18
135	Biochemical and mutagenic characterization of plantâ€activated aromatic amines. Environmental Toxicology and Chemistry, 1993, 12, 1353-1363.	4.3	32
136	Activation of Promutagens by Green Plants. Annual Review of Genetics, 1993, 27, 93-113.	7.6	86
137	Characterization of stable high molecular weight mutagenic product(s) of plant-activated m-phenylenediamine. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1993, 299, 111-120.	1.2	25
138	Blocking the Plant Activation of Promutagenic Aromatic Amines by Peroxidase Inhibitors. , 1993, 61, 201-217.		0
139	The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver. Toxicology and Applied Pharmacology, 1992, 117, 98-103.	2.8	57
140	Mutation spectrum of spontaneous frameshift revertants in yeast using double-strand gap repair. Environmental and Molecular Mutagenesis, 1992, 20, 84-88.	2.2	1
141	Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 247, 57-64.	1.0	134
142	The biochemical mechanisms of the plant activation of promutagenic aromatic amines. Environmental and Molecular Mutagenesis, 1990, 15, 236-244.	2.2	29
143	Effects of specific monooxygenase and oxidase inhibitors on the activation of 2-aminofluorene by plant cells. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1989, 216, 163-178.	0.4	25
144	Interference of Bis-Tris buffer with the diaminobenzoic acid fluorescence assay used to quantify DNA. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 226, 263-266.	1.1	1

#	Article	IF	CITATIONS
145	Molecular dosimetry studies of forward mutation induced at the yg2 locus in maize by ethyl methanesulfonate. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 211, 231-241.	1.0	12
146	Use of the diaminobenzoic acid fluorescence assay in conjunction with uv absorbance as a means of quantifying and ascertaining the purity of a DNA preparation. Analytical Biochemistry, 1989, 180, 314-318.	2.4	27
147	A Computerized Degree of Hazard Assessment for Evaluation of Wastes: An Innovative Aid to Management of Residuals. Water Science and Technology, 1989, 21, 821-831.	2.5	Ο
148	Analysis of the genotoxicity of municipal sewage sludge extracts with sister chromatid exchange in cultured human lymphocytes. Water, Air, and Soil Pollution, 1988, 42, 117.	2.4	4
149	The use of cell-free systems in plant activation studies. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1988, 197, 173-182.	1.0	18
150	The plant cell/microbe coincubation assay for the analysis of plant-activated promutagens. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1988, 197, 207-219.	1.0	33
151	The plant activation of m-phenylenediamine by Tradescantia clone 03 and clone 4430 cells in liquid suspension culture. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1988, 197, 303-312.	1.0	4
152	Assessment of the mutagenicity of fractions from s-triazine-treated Zea mays. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1988, 197, 325-336.	1.0	23
153	Mutagenicity of selected aniline derivatives to Salmonella following plant activation and mammalian hepatic activation. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1987, 188, 185-196.	1.2	31
154	Plant activation of m-phenylenediamine by tobacco, cotton, and carrot cell suspension cultures. Environmental and Molecular Mutagenesis, 1987, 10, 79-88.	2.2	20
155	In vitro activation of chemicals by plants: a comparison of techniques. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1986, 164, 53-58.	0.4	27
156	In vitro enhancement of the mutagenicity of 4-nitro-o-phenylenediamine by plant S-9. Environmental Mutagenesis, 1985, 7, 73-85.	1.4	31
157	Induction of forward mutation at theyg2 locus in maize by ethylnitrosourea. Environmental Mutagenesis, 1985, 7, 155-162.	1.4	5
158	Induction of micronuclei in maize root-tip cells and a correlation with forward mutation at theyg2 locus. Environmental Mutagenesis, 1985, 7, 821-832.	1.4	15
159	Plant Genetic Assays to Evaluate Complex Environmental Mixtures. , 1985, , 45-64.		2
160	Plant Genetic Assays and their Use in Studies on Environmental Mutagenesis in Developing Countries. , 1985, 34, 249-268.		6
161	Calibration of the maizeyg2 assay using gamma radiation and ethylmethanesulfonate. Environmental Mutagenesis, 1984, 6, 781-795.	1.4	8
162	An evaluation of the genotoxic properties of herbicides following plant and animal activation. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1984, 136, 233-245.	1.2	99

#	Article	IF	CITATIONS
163	The Maize-Microbe Bioassay: A Unique Approach to Environmental Mutagenesis. , 1983, , 151-165.		2
164	The Activation of Chemicals into Mutagens by Green Plants. , 1982, , 401-420.		37
165	Plant Dependent Mutation Assays. , 1982, 21, 327-352.		2
166	Use of four shortâ€ŧerm tests to evaluate the mutagenicity of municipal water. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1982, 9, 127-140.	2.3	25
167	An evaluation of the genotoxic properties of insecticides following plant and animal activation. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1982, 101, 19-29.	1.2	96
168	Specific-locus mutation assay in Zea may. Mutation Research - Reviews in Genetic Toxicology, 1982, 99, 317-337.	2.9	30
169	Absence of genotoxicity induced by 3H and 14C label in Salmonella typhimurium and Bacillus subtilus. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 104, 29-33.	1.1	1
170	The detection of weak recombinogenic activities in the herbicides alachlor and propachlor using a plant-activation bioassay. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1977, 48, 113-115.	1.0	32
171	Mutagenicity of atrazine: A maize-microbe bioassay. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1976, 38, 287-292.	0.4	92