Leonora Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10489730/publications.pdf Version: 2024-02-01

		331670	434195
32	1,612	21	31
papers	citations	h-index	g-index
32	32	32	2010
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	STNâ€DBS Increases Proactive but Not Retroactive Interference During Verbal Learning in PD. Movement Disorders, 2021, 36, 1010-1015.	3.9	2
2	Dissociable effects of subthalamic nucleus deep brain stimulation surgery and acute stimulation on verbal fluency in Parkinson's disease. Behavioural Brain Research, 2020, 388, 112621.	2.2	10
3	Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition. Brain Stimulation, 2017, 10, 944-951.	1.6	35
4	Motor cortex inhibition by TMS reduces cognitive non-motor procedural learning when immediate incentives are present. Cortex, 2017, 97, 70-80.	2.4	5
5	The role of dopamine in positive and negative prediction error utilization during incidental learning – Insights from Positron Emission Tomography, Parkinson's disease and Huntington's disease. Cortex, 2017, 90, 149-162.	2.4	19
6	Problem solving, impulse control and planning in patients with early- and late-stage Huntington's disease. European Archives of Psychiatry and Clinical Neuroscience, 2016, 266, 663-671.	3.2	38
7	In Parkinson's disease on a probabilistic Go/NoGo task deep brain stimulation of the subthalamic nucleus only interferes with withholding of the most prepotent responses. Experimental Brain Research, 2016, 234, 1133-1143.	1.5	34
8	Shifts in connectivity during procedural learning after motor cortex stimulation: A combined transcranial magnetic stimulation/functional magnetic resonance imaging study. Cortex, 2016, 74, 134-148.	2.4	45
9	Load-Dependent Interference of Deep Brain Stimulation of the Subthalamic Nucleus with Switching from Automatic to Controlled Processing During Random Number Generation in Parkinson's Disease. Journal of Parkinson's Disease, 2015, 5, 321-331.	2.8	9
10	Non Declarative (Procedural) Memory. , 2015, , 844-850.		3
11	Online feedback enhances early consolidation of motor sequence learning and reverses recall deficit from transcranial stimulation of motor cortex. Cortex, 2015, 71, 134-147.	2.4	14
12	The subthalamic nucleus and inhibitory control: impact of subthalamotomy in Parkinson's disease. Brain, 2014, 137, 1470-1480.	7.6	86
13	Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not. Human Brain Mapping, 2014, 35, 5106-5115.	3.6	23
14	The subthalamic nucleus is involved in successful inhibition in the stop-signal task: A local field potential study in Parkinson's disease. Experimental Neurology, 2013, 239, 1-12.	4.1	143
15	Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson's disease. Experimental Brain Research, 2013, 226, 451-462.	1.5	67
16	Selective executive dysfunction but intact risky decisionâ€making in early Huntington's disease. Movement Disorders, 2013, 28, 1104-1109.	3.9	31
17	Probabilistic classification learning with corrective feedback is selectively impaired in early Huntington's disease—Evidence for the role of the striatum in learning with feedback. Neuropsychologia, 2012, 50, 2176-2186.	1.6	31
18	Deep brain stimulation of the subthalamic nucleus selectively improves learning of weakly associated cue combinations during probabilistic classification learning in Parkinson's disease Neuropsychology, 2011, 25, 286-294.	1.3	12

LEONORA WILKINSON

#	Article	IF	CITATIONS
19	Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease. Experimental Brain Research, 2011, 212, 371-384.	1.5	180
20	Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson's disease. Experimental Brain Research, 2011, 213, 435-445.	1.5	68
21	Medication impairs probabilistic classification learning in Parkinson's disease. Neuropsychologia, 2010, 48, 1096-1103.	1.6	106
22	Abnormal explicit but normal implicit sequence learning in premanifest and early Huntington's disease. Movement Disorders, 2010, 25, 1343-1349.	3.9	23
23	Models of probabilistic category learning in Parkinson's disease: Strategy use and the effects of L-dopa. Journal of Mathematical Psychology, 2010, 54, 123-136.	1.8	18
24	The Contribution of Primary Motor Cortex is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation. Journal of Cognitive Neuroscience, 2010, 22, 427-436.	2.3	56
25	The role of the basal ganglia and its cortical connections in sequence learning: Evidence from implicit and explicit sequence learning in Parkinson's disease. Neuropsychologia, 2009, 47, 2564-2573.	1.6	74
26	Patients with Parkinson's disease learn to control complex systems via procedural as well as non-procedural learning. Neuropsychologia, 2008, 46, 2355-2363.	1.6	19
27	The effect of feedback on non-motor probabilistic classification learning in Parkinson's disease. Neuropsychologia, 2008, 46, 2683-2695.	1.6	39
28	STN Stimulation Alters Pallidal—Frontal Coupling during Response Selection under Competition. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1173-1184.	4.3	67
29	The striatum and probabilistic implicit sequence learning. Brain Research, 2007, 1137, 117-130.	2.2	59
30	Disruption of Sequential Priming in Organic and Pharmacological Amnesia: A Role for the Medial Temporal Lobes in Implicit Contextual Learning. Neuropsychopharmacology, 2006, 31, 1768-1776.	5.4	25
31	Intentional Control and Implicit Sequence Learning Journal of Experimental Psychology: Learning Memory and Cognition, 2004, 30, 354-369.	0.9	164
32	Relationship between priming and recognition in deterministic and probabilistic sequence learning Journal of Experimental Psychology: Learning Memory and Cognition, 2003, 29, 248-261.	0.9	107