Lucy Glover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048927/publications.pdf

Version: 2024-02-01

31	2,051	361413	454955
papers	citations	h-index	g-index
35	35	35	1850
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Research, 2011, 21, 915-924.	5.5	404
2	High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature, 2012, 482, 232-236.	27.8	276
3	Tagging a T. brucei RRNA locus improves stable transfection efficiency and circumvents inducible expression position effects. Molecular and Biochemical Parasitology, 2005, 144, 142-148.	1.1	135
4	Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10996-11001.	7.1	134
5	Sequence homology and microhomology dominate chromosomal double-strand break repair in African trypanosomes. Nucleic Acids Research, 2008, 36, 2608-2618.	14.5	103
6	Trypanosomal histone \hat{I}^3 H2A and the DNA damage response. Molecular and Biochemical Parasitology, 2012, 183, 78-83.	1.1	94
7	DNA Break Site at Fragile Subtelomeres Determines Probability and Mechanism of Antigenic Variation in African Trypanosomes. PLoS Pathogens, 2013, 9, e1003260.	4.7	92
8	VEX1 controls the allelic exclusion required for antigenic variation in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7225-7230.	7.1	90
9	Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nature Communications, 2019, 10, 3023.	12.8	73
10	Microhomology-mediated deletion and gene conversion in African trypanosomes. Nucleic Acids Research, 2011, 39, 1372-1380.	14.5	68
11	Antigenic variation in A frican trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cellular Microbiology, 2013, 15, 1984-1993.	2.1	55
12	PPL2 Translesion Polymerase Is Essential for the Completion of Chromosomal DNA Replication in the African Trypanosome. Molecular Cell, 2013, 52, 554-565.	9.7	54
13	Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African trypanosomes. Nature Microbiology, 2021, 6, 289-300.	13.3	50
14	Genome-scale RNAi screens for high-throughput phenotyping in bloodstream-form African trypanosomes. Nature Protocols, 2015, 10, 106-133.	12.0	49
15	Repression of polymerase lâ€mediated gene expression at Trypanosoma brucei telomeres. EMBO Reports, 2006, 7, 93-99.	4.5	46
16	Deletion of a trypanosome telomere leads to loss of silencing and progressive loss of terminal DNA in the absence of cell cycle arrest. Nucleic Acids Research, 2007, 35, 872-880.	14.5	45
17	CRISPR in Parasitology: Not Exactly Cut and Dried!. Trends in Parasitology, 2019, 35, 409-422.	3.3	43
18	Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Neglected Tropical Diseases, 2018, 12, e0006980.	3.0	41

#	Article	IF	CITATIONS
19	Site-specific DNA double-strand breaks greatly increase stable transformation efficiency in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2009, 166, 194-197.	1.1	38
20	Genome-wide RNAi selection identifies a regulator of transmission stage-enriched gene families and cell-type differentiation in Trypanosoma brucei. PLoS Pathogens, 2017, 13, e1006279.	4.7	30
21	Persistent DNA Damage Foci and DNA Replication with a Broken Chromosome in the African Trypanosome. MBio, 2019, 10, .	4.1	24
22	High-resolution analysis of multi-copy variant surface glycoprotein gene expression sites in African trypanosomes. BMC Genomics, 2016, 17, 806.	2.8	23
23	Locus-specific control of DNA resection and suppression of subtelomeric VSG recombination by HAT3 in the African trypanosome. Nucleic Acids Research, 2014, 42, 12600-12613.	14.5	22
24	Escaping the immune system by DNA repair and recombination in African trypanosomes. Open Biology, 2019, 9, 190182.	3.6	22
25	A post-transcriptional respiratome regulon in trypanosomes. Nucleic Acids Research, 2019, 47, 7063-7077.	14.5	14
26	The MRN complex promotes DNA repair by homologous recombination and restrains antigenic variation in African trypanosomes. Nucleic Acids Research, 2021, 49, 1436-1454.	14.5	11
27	DNA double strand break position leads to distinct gene expression changes and regulates VSG switching pathway choice. PLoS Pathogens, 2021, 17, e1010038.	4.7	6
28	mSphere of Influence: Expanding the CRISPR Sphere with Single-Locus Proteomics. MSphere, 2020, 5, .	2.9	3
29	VEX1 Influences mVSG Expression During the Transition to Mammalian Infectivity in Trypanosoma brucei. Frontiers in Cell and Developmental Biology, 2022, 10, 851475.	3.7	2
30	Transcription Dependent Loss of an Ectopically Expressed Variant Surface Glycoprotein during Antigenic Variation in Trypanosoma brucei. MBio, 2022, 13, e0384721.	4.1	1
31	Forward Genetics in African Trypanosomes. Methods in Molecular Biology, 2020, 2116, 339-352.	0.9	0