
## Ji-Song Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/104875/publications.pdf Version: 2024-02-01



IL-SONG GUAN

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | ASH1L haploinsufficiency results in autistic-like phenotypes in mice and links Eph receptor gene to autism spectrum disorder. Neuron, 2022, 110, 1156-1172.e9.                           | 8.1  | 14        |
| 2  | Acquiring new memories in neocortex of hippocampal-lesioned mice. Nature Communications, 2022, 13, 1601.                                                                                 | 12.8 | 12        |
| 3  | Suv39h1 regulates memory stability by inhibiting the expression of <i>Shank1</i> in hippocampal newborn neurons. European Journal of Neuroscience, 2022, 55, 1424-1441.                  | 2.6  | 5         |
| 4  | Development of Memory Circuits under Epigenetic Regulation. , 2022, , 438-453.                                                                                                           |      | 0         |
| 5  | Detecting Abnormal Neuronal Activity in a Chronic Migraine Model by Egr1-EGFP Transgenic Mice.<br>Frontiers in Neuroscience, 2021, 15, 705938.                                           | 2.8  | 2         |
| 6  | Rett syndrome linked to defects in forming the MeCP2/Rbfox/LASR complex in mouse models. Nature Communications, 2021, 12, 5767.                                                          | 12.8 | 16        |
| 7  | Egr1-EGFP transgenic mouse allows in vivo recording of Egr1 expression and neural activity. Journal of Neuroscience Methods, 2021, 363, 109350.                                          | 2.5  | 5         |
| 8  | Single Image-Based Vignetting Correction for Improving the Consistency of Neural Activity Analysis in 2-Photon Functional Microscopy. Frontiers in Neuroinformatics, 2021, 15, 674439.   | 2.5  | 0         |
| 9  | Mutations in ASH1L confer susceptibility to Tourette syndrome. Molecular Psychiatry, 2020, 25, 476-490.                                                                                  | 7.9  | 41        |
| 10 | In vivo stress granule misprocessing evidenced in a FUS knock-in ALS mouse model. Brain, 2020, 143, 1350-1367.                                                                           | 7.6  | 42        |
| 11 | Spontaneous hyperactivity in Ash1l mutant mice, a new model for Tourette syndrome. Molecular<br>Psychiatry, 2020, 25, 241-242.                                                           | 7.9  | 1         |
| 12 | Multimodal Memory Components and Their Long-Term Dynamics Identified in Cortical Layers II/III but<br>Not Layer V. Frontiers in Integrative Neuroscience, 2019, 13, 54.                  | 2.1  | 3         |
| 13 | Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning. Scientific Reports, 2019, 9, 7424. | 3.3  | 9         |
| 14 | Switching From Fear to No Fear by Different Neural Ensembles in Mouse Retrosplenial Cortex.<br>Cerebral Cortex, 2019, 29, 5085-5097.                                                     | 2.9  | 23        |
| 15 | Implantable and Biodegradable Poly( <scp>l</scp> â€lactic acid) Fibers for Optical Neural Interfaces.<br>Advanced Optical Materials, 2018, 6, 1700941.                                   | 7.3  | 92        |
| 16 | Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Nano Letters, 2018, 18, 2903-2911.                            | 9.1  | 146       |
| 17 | Do Brain Oscillations Orchestrate Memory?. Brain Science Advances, 2018, 4, 16-33.                                                                                                       | 0.9  | 14        |
| 18 | Mammillary body regulates state-dependent fear by alternating cortical oscillations. Scientific<br>Reports, 2018, 8, 13471.                                                              | 3.3  | 13        |

JI-SONG GUAN

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation.<br>Nature Neuroscience, 2017, 20, 690-699.                                                                                   | 14.8 | 91        |
| 20 | Epigenetic regulators sculpt the plastic brain. Frontiers in Biology, 2017, 12, 317-332.                                                                                                                                     | 0.7  | 0         |
| 21 | How Does the Sparse Memory "Engram―Neurons Encode the Memory of a Spatial–Temporal Event?.<br>Frontiers in Neural Circuits, 2016, 10, 61.                                                                                    | 2.8  | 12        |
| 22 | Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α. Scientific<br>Reports, 2016, 6, 26597.                                                                                                | 3.3  | 39        |
| 23 | Neuron Segmentation Based on CNN with Semi-Supervised Regularization. , 2016, , .                                                                                                                                            |      | 14        |
| 24 | Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chemical Science, 2015, 6, 804-815.                                                                                                | 7.4  | 93        |
| 25 | The role of epigenetic regulation in learning and memory. Experimental Neurology, 2015, 268, 30-36.                                                                                                                          | 4.1  | 61        |
| 26 | Activity-Dependent p25 Generation Regulates Synaptic Plasticity and AÎ <sup>2</sup> -Induced Cognitive Impairment.<br>Cell, 2014, 157, 486-498.                                                                              | 28.9 | 74        |
| 27 | In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the<br>mammalian brain. Proceedings of the National Academy of Sciences of the United States of America,<br>2014, 111, 2788-2793. | 7.1  | 64        |
| 28 | A One-Step Screening System for Multi-Zinc Finger Proteins Targeting a Long-DNA Sequence. Scientia<br>Sinica Vitae, 2014, 44, 1061-1072.                                                                                     | 0.3  | 0         |
| 29 | 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer's disease via mitochondria protection mechanism. Biomaterials, 2013, 34, 7552-7562.                                                                     | 11.4 | 113       |
| 30 | Mitochondrial Alterations near Amyloid Plaques in an Alzheimer's Disease Mouse Model. Journal of<br>Neuroscience, 2013, 33, 17042-17051.                                                                                     | 3.6  | 156       |
| 31 | Crebinostat: A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology, 2013, 64, 81-96.                                                     | 4.1  | 87        |
| 32 | An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 2012, 483, 222-226.                                                                                                                    | 27.8 | 733       |
| 33 | Facilitation of μ-Opioid Receptor Activity by Preventing δ-Opioid Receptor-Mediated Codegradation.<br>Neuron, 2011, 69, 120-131.                                                                                             | 8.1  | 208       |
| 34 | Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway.<br>PLoS ONE, 2011, 6, e25735.                                                                                                | 2.5  | 62        |
| 35 | A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 2010, 466, 1105-1109.                                                                                                                         | 27.8 | 864       |
| 36 | HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459, 55-60.                                                                                                                               | 27.8 | 1,414     |

JI-SONG GUAN

| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Distinct Subcellular Distribution of δ-Opioid Receptor Fused with Various Tags in PC12 Cells.<br>Neurochemical Research, 2008, 33, 2028-2034.               | 3.3  | 38        |
| 38 | Deregulation of HDAC1 by p25/Cdk5 in Neurotoxicity. Neuron, 2008, 60, 803-817.                                                                              | 8.1  | 262       |
| 39 | Role of delivery and trafficking of Î-opioid peptide receptors in opioid analgesia and tolerance. Trends<br>in Pharmacological Sciences, 2006, 27, 324-329. | 8.7  | 88        |
| 40 | Interaction with Vesicle Luminal Protachykinin Regulates Surface Expression of δ-Opioid Receptors and Opioid Analgesia. Cell, 2005, 122, 619-631.           | 28.9 | 139       |
| 41 | Activation of Delta Opioid Receptors Induces Receptor Insertion and Neuropeptide Secretion. Neuron, 2003, 37, 121-133.                                      | 8.1  | 158       |