Mark W Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048596/publications.pdf

Version: 2024-02-01

78 papers

3,843 citations

36 h-index 60 g-index

80 all docs

80 docs citations

80 times ranked 2881 citing authors

#	Article	IF	CITATIONS
1	Developmental Regulation and Functional Prediction of microRNAs in an Expanded Fasciola hepatica miRNome. Frontiers in Cellular and Infection Microbiology, 2022, 12, 811123.	3.9	9
2	Synthetic peptides derived from the Schistosoma mansoni secretory protein Sm16 induce contrasting responses in hepatic stellate cells. Experimental Parasitology, 2022, 236-237, 108255.	1.2	1
3	Fasciola hepatica Gastrodermal Cells Selectively Release Extracellular Vesicles via a Novel Atypical Secretory Mechanism. International Journal of Molecular Sciences, 2022, 23, 5525.	4.1	9
4	Foodborne trematodes: old foes, new kids on the block and research perspectives for control and understanding host–parasite interactions. Parasitology, 2022, 149, 1257-1261.	1.5	4
5	Transcriptome and Secretome Analysis of Intra-Mammalian Life-Stages of Calicophoron daubneyi Reveals Adaptation to a Unique Host Environment. Molecular and Cellular Proteomics, 2021, 20, 100055.	3.8	4
6	Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genomics, 2021, 22, 46.	2.8	28
7	Trematode Proteomics: Recent Advances and Future Directions. Pathogens, 2021, 10, 348.	2.8	14
8	The parasite-derived peptide FhHDM-1 activates the PI3K/Akt pathway to prevent cytokine-induced apoptosis of \hat{l}^2 -cells. Journal of Molecular Medicine, 2021, 99, 1605-1621.	3.9	7
9	RNA sequencing of LX-2 cells treated with TGF- \hat{I}^21 identifies genes associated with hepatic stellate cell activation. Molecular Biology Reports, 2021, 48, 7677-7688.	2.3	4
10	Proteomics of Host-Helminth Interactions. Pathogens, 2021, 10, 1317.	2.8	3
11	Role of Fasciola hepatica Small RNAs in the Interaction With the Mammalian Host. Frontiers in Cellular and Infection Microbiology, 2021, 11, 812141.	3.9	6
12	A comparative proteomics analysis of the egg secretions of three major schistosome species. Molecular and Biochemical Parasitology, 2020, 240, 111322.	1,1	21
13	The protein and microRNA cargo of extracellular vesicles from parasitic helminths – current status and research priorities. International Journal for Parasitology, 2020, 50, 635-645.	3.1	73
14	Calicophoron daubneyiâ€"The Path Toward Understanding Its Pathogenicity and Host Interactions. Frontiers in Veterinary Science, 2020, 7, 606.	2.2	11
15	Fasciola hepatica Extracellular Vesicles isolated from excretory-secretory products using a gravity flow method modulate dendritic cell phenotype and activity. PLoS Neglected Tropical Diseases, 2020, 14, e0008626.	3.0	38
16	The cellular and molecular origins of extracellular vesicles released by the helminth pathogen, Fasciola hepatica. International Journal for Parasitology, 2020, 50, 671-683.	3.1	17
17	Helminth genome analysis reveals conservation of extracellular vesicle biogenesis pathways but divergence of RNA loading machinery between phyla. International Journal for Parasitology, 2020, 50, 655-661.	3.1	12
18	Isolation of Secreted and Tegumental Surface Proteins from Fasciola hepatica. Methods in Molecular Biology, 2020, 2137, 27-36.	0.9	0

#	Article	IF	Citations
19	Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells. PLoS Neglected Tropical Diseases, 2019, 13, e0007087.	3.0	88
20	The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Advances in Parasitology, 2019, 104, 113-164.	3.2	46
21	The effect of dietary fatty acid supplementation on gut microbiome development in weaning piglets. Access Microbiology, 2019, 1 , .	0.5	0
22	Schistosome-Induced Fibrotic Disease: The Role of Hepatic Stellate Cells. Trends in Parasitology, 2018, 34, 524-540.	3.3	93
23	Infection by the Helminth Parasite Fasciola hepatica Requires Rapid Regulation of Metabolic, Virulence, and Invasive Factors to Adjust to Its Mammalian Host. Molecular and Cellular Proteomics, 2018, 17, 792-809.	3.8	76
24	Response to Morley: The Influence of Climate on Survival of Paramphistome Metacercariae. Trends in Parasitology, 2018, 34, 98-99.	3.3	0
25	Optimized conditions for the <i>in vitro </i> excystment of <i>Calicophoron daubneyi </i> metacercariae. Parasitology, 2018, 145, 1015-1019.	1.5	4
26	Paramphistomosis of Ruminants: An Emerging Parasitic Disease in Europe. Trends in Parasitology, 2017, 33, 836-844.	3.3	76
27	The immune modulatory peptide FhHDMâ€1 secreted by the helminth Fasciola hepatica prevents NLRP3 inflammasome activation by inhibiting endolysosomal acidification in macrophages. FASEB Journal, 2017, 31, 85-95.	0.5	54
28	Extracellular vesicle-mediated communication in host-parasite interactions: insight from Fasciola hepatica. Annals of Translational Medicine, 2017, 5, S8-S8.	1.7	4
29	Extracellular Vesicle Biogenesis in Helminths: More than One Route to the Surface?. Trends in Parasitology, 2016, 32, 921-929.	3.3	40
30	Unexpected Activity of a Novel Kunitz-type Inhibitor. Journal of Biological Chemistry, 2016, 291, 19220-19234.	3.4	29
31	A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Scientific Reports, 2016, 6, 37789.	3.3	34
32	The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis*. Molecular and Cellular Proteomics, 2015, 14, 3258-3273.	3.8	194
33	Secreted Proteins from the Helminth Fasciola hepatica Inhibit the Initiation of Autoreactive T Cell Responses and Prevent Diabetes in the NOD Mouse. PLoS ONE, 2014, 9, e86289.	2.5	59
34	Trematode Cysteine Endopeptidases. , 2013, , 1941-1949.		2
35	Fasciola hepatica: The therapeutic potential of a worm secretome. International Journal for Parasitology, 2013, 43, 283-291.	3.1	43
36	Immunomodulatory molecules of Fasciola hepatica: Candidates for both vaccine and immunotherapeutic development. Veterinary Parasitology, 2013, 195, 272-285.	1.8	162

#	Article	IF	CITATIONS
37	MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of <i>Mycoplasma hyopneumoniae</i>). Open Biology, 2013, 3, 130017.	3.6	58
38	Cathelicidin-like Helminth Defence Molecules (HDMs): Absence of Cytotoxic, Anti-microbial and Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation. PLoS Neglected Tropical Diseases, 2013, 7, e2307.	3.0	34
39	Helminth defence moleculesâ€"immunomodulators designed by parasites!. Frontiers in Microbiology, 2013, 4, 296.	3.5	25
40	Cathepsin W., 2013, , 1834-1838.		6
41	Defense peptides secreted by helminth pathogens: antimicrobial and/or immunomodulator molecules?. Frontiers in Immunology, 2012, 3, 269.	4.8	23
42	Antimicrobial peptides: utility players in innate immunity. Frontiers in Immunology, 2012, 3, 325.	4.8	3
43	Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes and Infection, 2012, 14, 301-310.	1.9	46
44	A helminth cathelicidinâ€like protein suppresses antigen processing and presentation in macrophages <i>via</i> inhibition of lysosomal vATPase. FASEB Journal, 2012, 26, 4614-4627.	0.5	71
45	A Family of Helminth Molecules that Modulate Innate Cell Responses via Molecular Mimicry of Host Antimicrobial Peptides. PLoS Pathogens, 2011, 7, e1002042.	4.7	115
46	RNA interference targeting cathepsin B of the carcinogenic liver fluke, Opisthorchis viverrini. Parasitology International, 2011, 60, 283-288.	1.3	32
47	The Phylogeny, Structure and Function of Trematode Cysteine Proteases, with Particular Emphasis on the Fasciola hepatica Cathepsin L Family. Advances in Experimental Medicine and Biology, 2011, 712, 116-135.	1.6	32
48	How Pathogen-Derived Cysteine Proteases Modulate Host Immune Responses. Advances in Experimental Medicine and Biology, 2011, 712, 192-207.	1.6	26
49	Collagenolytic Activities of the Major Secreted Cathepsin L Peptidases Involved in the Virulence of the Helminth Pathogen, Fasciola hepatica. PLoS Neglected Tropical Diseases, 2011, 5, e1012.	3.0	66
50	The Plasmodium falciparum Malaria M1 Alanyl Aminopeptidase (PfA-M1): Insights of Catalytic Mechanism and Function from MD Simulations. PLoS ONE, 2011, 6, e28589.	2.5	24
51	Worm secretory molecules are causing alarm. Trends in Parasitology, 2010, 26, 371-372.	3.3	25
52	Peroxiredoxin: a central player in immune modulation. Parasite Immunology, 2010, 32, 305-313.	1.5	102
53	Secreted cysteine proteases of the carcinogenic liver fluke, Opisthorchis viverrini: regulation of cathepsin F activation by autocatalysis and trans-processing by cathepsin B. Cellular Microbiology, 2010, 12, 781-795.	2.1	37
54	Aminopeptidases of Malaria Parasites: New Targets for Chemotherapy. Infectious Disorders - Drug Targets, 2010, 10, 217-225.	0.8	25

#	Article	IF	Citations
55	Helminth Cysteine Proteases Inhibit TRIF-dependent Activation of Macrophages via Degradation of TLR3. Journal of Biological Chemistry, 2010, 285, 3383-3392.	3.4	123
56	Cathepsin F Cysteine Protease of the Human Liver Fluke, Opisthorchis viverrini. PLoS Neglected Tropical Diseases, 2009, 3, e398.	3.0	59
57	The enigmatic asparaginyl endopeptidase of helminth parasites. Trends in Parasitology, 2009, 25, 59-61.	3.3	37
58	Cloning and analysis of a Trichinella pseudospiralis muscle larva secreted serine protease gene. Veterinary Parasitology, 2009, 159, 268-271.	1.8	15
59	Micro-environmental conditions modulate protein secretion and infectivity of the Trichinella spiralis L1 larva. Veterinary Parasitology, 2009, 159, 236-239.	1.8	6
60	An Integrated Transcriptomics and Proteomics Analysis of the Secretome of the Helminth Pathogen Fasciola hepatica. Molecular and Cellular Proteomics, 2009, 8, 1891-1907.	3.8	244
61	Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2763-2776.	4.0	134
62	The M17 Leucine Aminopeptidase of the Malaria Parasite <i>Plasmodium falciparum</i> Importance of Active Site Metal Ions in the Binding of Substrates and Inhibitors. Biochemistry, 2009, 48, 5435-5439.	2.5	47
63	The Importance of pH in Regulating the Function of the Fasciola hepatica Cathepsin L1 Cysteine Protease. PLoS Neglected Tropical Diseases, 2009, 3, e369.	3.0	69
64	Helminth pathogen cathepsin proteases: it's a family affair. Trends in Biochemical Sciences, 2008, 33, 601-608.	7.5	122
65	Fasciola hepatica expresses multiple \hat{l}_{\pm} - and \hat{l}^2 -tubulin isotypes. Molecular and Biochemical Parasitology, 2008, 159, 73-78.	1.1	48
66	Proteomics and Phylogenetic Analysis of the Cathepsin L Protease Family of the Helminth Pathogen Fasciola hepatica. Molecular and Cellular Proteomics, 2008, 7, 1111-1123.	3.8	118
67	Structural and Functional Relationships in the Virulence-associated Cathepsin L Proteases of the Parasitic Liver Fluke, Fasciola hepatica. Journal of Biological Chemistry, 2008, 283, 9896-9908.	3.4	90
68	Comparative analysis of the excretory–secretory proteome of the muscle larva of Trichinella pseudospiralis and Trichinella spiralis. International Journal for Parasitology, 2007, 37, 139-148.	3.1	74
69	Understanding triclabendazole resistance. Experimental and Molecular Pathology, 2007, 82, 104-109.	2.1	195
70	Secretion and processing of a novel multi-domain cystatin-like protein by intracellular stages of Trichinella spiralis. Molecular and Biochemical Parasitology, 2007, 151, 9-17.	1.1	32
71	Profiling excretory/secretory proteins of Trichinella spiralis muscle larvae by two-dimensional gel electrophoresis and mass spectrometry. Veterinary Parasitology, 2005, 132, 37-41.	1.8	25
72	Proteomic analysis of the excretory-secretory proteins of the Trichinella spiralis L1 larva, a nematode parasite of skeletal muscle. Proteomics, 2005, 5, 4525-4532.	2.2	90

#	Article	lF	CITATION
73	The comparative metabolism of triclabendazole sulphoxide by triclabendazole-susceptible and triclabendazole-resistant Fasciola hepatica. Parasitology Research, 2004, 92, 205-210.	1.6	94
74	A possible model of benzimidazole binding to \hat{l}^2 -tubulin disclosed by invoking an inter-domain movement. Journal of Molecular Graphics and Modelling, 2004, 23, 275-284.	2.4	106
75	The occurrence and significance of triploidy in the liver fluke,Fasciola hepatica. Parasitology, 2004, 128, 69-72.	1.5	54
76	The effect of the microtubule inhibitor tubulozole-C on the tegument of triclabendazole-susceptible and triclabendazole-resistant Fasciola hepatica. Parasitology Research, 2003, 91, 117-129.	1.6	18
77	Benzimidazole binding to Haemonchus contortus tubulin: a question of structure. Trends in Parasitology, 2002, 18, 153-154.	3.3	10
78	Development of the vitellaria of the liver fluke, Fasciola hepatica in the rat host. Parasitology, 2001, 123, 509-518.	1.5	16