Bernd Nilius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10484913/publications.pdf

Version: 2024-02-01

1799 3650 36,366 317 103 180 citations h-index g-index papers 398 398 398 20066 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transient Receptor Potential Cation Channels in Disease. Physiological Reviews, 2007, 87, 165-217.	28.8	1,260
2	The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature, 2004, 430, 748-754.	27.8	922
3	Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature, 2003, 424, 434-438.	27.8	895
4	lon Channels and Their Functional Role in Vascular Endothelium. Physiological Reviews, 2001, 81, 1415-1459.	28.8	792
5	Calcium Absorption Across Epithelia. Physiological Reviews, 2005, 85, 373-422.	28.8	746
6	The transient receptor potential family of ion channels. Genome Biology, 2011, 12, 218.	9.6	707
7	TRP channels: An overview. Cell Calcium, 2005, 38, 233-252.	2.4	688
8	Heat-evoked Activation of TRPV4 Channels in a HEK293 Cell Expression System and in Native Mouse Aorta Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 47044-47051.	3.4	580
9	TRPM6 Forms the Mg2+ Influx Channel Involved in Intestinal and Renal Mg2+ Absorption. Journal of Biological Chemistry, 2004, 279, 19-25.	3.4	552
10	Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4â^'/â^' mice. Nature Cell Biology, 2001, 3, 121-127.	10.3	533
11	Activation of TRPV4 Channels (hVRL-2/mTRP12) by Phorbol Derivatives. Journal of Biological Chemistry, 2002, 277, 13569-13577.	3.4	519
12	PERMEATION AND SELECTIVITY OF TRP CHANNELS. Annual Review of Physiology, 2006, 68, 685-717.	13.1	505
13	TRPA1 acts as a cold sensor in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1273-1278.	7.1	503
14	TRPM3 Is a Nociceptor Channel Involved in the Detection of Noxious Heat. Neuron, 2011, 70, 482-494.	8.1	454
15	Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacological Reviews, 2014, 66, 676-814.	16.0	440
16	Bimodal Action of Menthol on the Transient Receptor Potential Channel TRPA1. Journal of Neuroscience, 2007, 27, 9874-9884.	3.6	438
17	Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature, 2005, 438, 1022-1025.	27.8	408
18	TRPV4 calcium entry channel: a paradigm for gating diversity. American Journal of Physiology - Cell Physiology, 2004, 286, C195-C205.	4.6	401

#	Article	IF	CITATIONS
19	Pharmacology of Vanilloid Transient Receptor Potential Cation Channels. Molecular Pharmacology, 2009, 75, 1262-1279.	2.3	366
20	Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19084-19089.	7.1	351
21	TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of Cell Biology, 2008, 182, 437-447.	5.2	349
22	The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003962-a003962.	5.5	344
23	Properties of volume-regulated anion channels in mammalian cells. Progress in Biophysics and Molecular Biology, 1997, 68, 69-119.	2.9	331
24	Sensing with TRP channels. Nature Chemical Biology, 2005, 1, 85-92.	8.0	323
25	Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nature Genetics, 2008, 40, 999-1003.	21.4	320
26	Peripheral thermosensation in mammals. Nature Reviews Neuroscience, 2014, 15, 573-589.	10.2	304
27	Voltage Dependence of the Ca2+-activated Cation Channel TRPM4. Journal of Biological Chemistry, 2003, 278, 30813-30820.	3.4	302
28	The vanilloid transient receptor potential channel TRPV4: From structure to disease. Progress in Biophysics and Molecular Biology, 2010, 103, 2-17.	2.9	295
29	TRPV4: Molecular Conductor of a Diverse Orchestra. Physiological Reviews, 2016, 96, 911-973.	28.8	295
30	Permeation and Gating Properties of the Novel Epithelial Ca2+ Channel. Journal of Biological Chemistry, 2000, 275, 3963-3969.	3.4	288
31	The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Archiv European Journal of Physiology, 2012, 464, 425-458.	2.8	287
32	Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. Journal of Clinical Investigation, 2007, 117, 3453-3462.	8.2	283
33	Molecular Determinants of Permeation through the Cation Channel TRPV4. Journal of Biological Chemistry, 2002, 277, 33704-33710.	3.4	270
34	The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO Journal, 2006, 25, 467-478.	7.8	268
35	TRP channels in disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 805-812.	3.8	265
36	Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain, 2011, 152, 1621-1631.	4.2	264

#	Article	IF	Citations
37	TRPs in Our Senses. Current Biology, 2008, 18, R880-R889.	3.9	261
38	TRPV4-Mediated Calcium Influx Regulates Terminal Differentiation of Osteoclasts. Cell Metabolism, 2008, 8, 257-265.	16.2	260
39	ION CHANNELS IN VASCULAR ENDOTHELIUM. Annual Review of Physiology, 1997, 59, 145-170.	13.1	257
40	Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO Journal, 2003, 22, 1478-1487.	7.8	253
41	Regulation of the Ca2+ Sensitivity of the Nonselective Cation Channel TRPM4. Journal of Biological Chemistry, 2005, 280, 6423-6433.	3.4	252
42	The puzzle of TRPV4 channelopathies. EMBO Reports, 2013, 14, 152-163.	4.5	252
43	TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nature Chemical Biology, 2007, 3, 174-182.	8.0	249
44	Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nature Immunology, 2007, 8, 312-320.	14.5	245
45	Gating of TRP channels: a voltage connection?. Journal of Physiology, 2005, 567, 35-44.	2.9	244
46	Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiological Reviews, 2020, 100, 725-803.	28.8	236
47	Molecular Mechanism of Active Ca ²⁺ Reabsorption in the Distal Nephron. Annual Review of Physiology, 2002, 64, 529-549.	13.1	221
48	Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium, 2005, 37, 267-278.	2.4	215
49	Nicotine activates the chemosensory cation channel TRPA1. Nature Neuroscience, 2009, 12, 1293-1299.	14.8	214
50	CaT1 and the Calcium Release-activated Calcium Channel Manifest Distinct Pore Properties. Journal of Biological Chemistry, 2001, 276, 47767-47770.	3.4	212
51	TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 1-10.	2.8	204
52	De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nature Medicine, 2009, 15, 185-191.	30.7	199
53	Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. Journal of Molecular Cell Biology, 2012, 4, 88-96.	3.3	193
54	TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Archiv European Journal of Physiology, 2012, 463, 561-569.	2.8	190

#	Article	IF	CITATIONS
55	The Capsaicin Receptor TRPV1 Is a Crucial Mediator of the Noxious Effects of Mustard Oil. Current Biology, 2011, 21, 316-321.	3.9	189
56	The epithelial calcium channels, TRPV5 & Depth 2003, 33, 497-507.	2.4	187
57	Loss of high-frequency glucose-induced Ca ²⁺ oscillations in pancreatic islets correlates with impaired glucose tolerance in <i> Trpm5 ^{â^'/â^'} </i> Mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5208-5213.	7.1	187
58	Vanilloid Transient Receptor Potential Cation Channels: An Overview. Current Pharmaceutical Design, 2008, 14, 18-31.	1.9	180
59	Transient Receptor Potential Channels in Endothelium: Solving the Calcium Entry Puzzle?. Endothelium: Journal of Endothelial Cell Research, 2003, 10, 5-15.	1.7	174
60	Mutations in the Gene Encoding the Calcium-Permeable Ion Channel TRPV4 Produce Spondylometaphyseal Dysplasia, Kozlowski Type and Metatropic Dysplasia. American Journal of Human Genetics, 2009, 84, 307-315.	6.2	173
61	PACSINs Bind to the TRPV4 Cation Channel. Journal of Biological Chemistry, 2006, 281, 18753-18762.	3.4	166
62	Volume-activated Clâ^' channels. General Pharmacology, 1996, 27, 1131-1140.	0.7	165
63	Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. Journal of Physiology, 1999, 518, 345-358.	2.9	165
64	Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovascular Research, 2008, 80, 445-452.	3.8	165
65	The †headache tree†via umbellulone and TRPA1 activates the trigeminovascular system. Brain, 2012, 135, 376-390.	7.6	163
66	DCPIB is a novel selective blocker of I Cl, swell and prevents swelling-induced shortening of guinea-pig atrial action potential duration. British Journal of Pharmacology, 2001, 134, 1467-1479.	5.4	161
67	The Single Pore Residue Asp542 Determines Ca2+ Permeation and Mg2+ Block of the Epithelial Ca2+ Channel. Journal of Biological Chemistry, 2001, 276, 1020-1025.	3.4	161
68	Differential expression of volumeâ€regulated anion channels during cell cycle progression of human cervical cancer cells. Journal of Physiology, 2000, 529, 385-394.	2.9	156
69	Herbal Compounds and Toxins Modulating TRP Channels. Current Neuropharmacology, 2008, 6, 79-96.	2.9	155
70	Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends in Neurosciences, 2008, 31, 287-295.	8.6	152
71	Transient receptor potential channels meet phosphoinositides. EMBO Journal, 2008, 27, 2809-2816.	7.8	147
72	TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Research, 2012, 22, 551-564.	12.0	147

#	Article	IF	CITATIONS
73	Regulation of a swelling-activated chloride current in bovine endothelium by protein tyrosine phosphorylation and G proteins. Journal of Physiology, 1998, 506, 341-352.	2.9	145
74	Wholeâ€cell and single channel monovalent cation currents through the novel rabbit epithelial Ca 2+ channel ECaC. Journal of Physiology, 2000, 527, 239-248.	2.9	145
75	Mg2+-dependent Gating and Strong Inward Rectification of the Cation Channel TRPV6. Journal of General Physiology, 2003, 121, 245-260.	1.9	143
76	Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Archiv European Journal of Physiology, 2016, 468, 371-383.	2.8	139
77	Transient receptor potential channelopathies. Pflugers Archiv European Journal of Physiology, 2010, 460, 437-450.	2.8	137
78	TRP Channels in Disease. Science Signaling, 2005, 2005, re8.	3.6	135
79	Functional characterization of transient receptor potential channels in mouse urothelial cells. American Journal of Physiology - Renal Physiology, 2010, 298, F692-F701.	2.7	135
80	<scp>TRP</scp> Channels. , 2012, 2, 563-608.		134
81	Sensing pressure with ion channels. Trends in Neurosciences, 2012, 35, 477-486.	8.6	134
82	Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. Journal of Clinical Investigation, 2010, 120, 3267-3279.	8.2	134
83	The TRPV4 channel: structure-function relationship and promiscuous gating behaviour. Pflugers Archiv European Journal of Physiology, 2003, 446, 298-303.	2.8	132
84	Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. Journal of Physiology, 1999, 516, 67-74.	2.9	128
85	Regulation of the Mouse Epithelial Ca2+ Channel TRPV6 by the Ca2+-sensor Calmodulin. Journal of Biological Chemistry, 2004, 279, 28855-28861.	3.4	126
86	Intracellular nucleotides and polyamines inhibit the Ca 2+ -activated cation channel TRPM4b. Pflugers Archiv European Journal of Physiology, 2004, 448, 70-75.	2.8	125
87	Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport. EMBO Journal, 2006, 25, 2978-2988.	7.8	125
88	Spices: The Savory and Beneficial Science of Pungency. Reviews of Physiology, Biochemistry and Pharmacology, 2013, 164, 1-76.	1.6	125
89	Blockers of volume-activated Cl? currents inhibit endothelial cell proliferation. Pflugers Archiv European Journal of Physiology, 1995, 431, 132-134.	2.8	124
90	Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Archiv European Journal of Physiology, 2001, 443, 227-233.	2.8	120

#	Article	IF	Citations
91	The Selectivity Filter of the Cation Channel TRPM4. Journal of Biological Chemistry, 2005, 280, 22899-22906.	3.4	120
92	Determinants of $4\hat{l}_{\pm}$ -Phorbol Sensitivity in Transmembrane Domains 3 and 4 of the Cation Channel TRPV4. Journal of Biological Chemistry, 2007, 282, 12796-12803.	3.4	119
93	Transient Receptor Potential Channels in Mechanosensing and Cell Volume Regulation. Methods in Enzymology, 2007, 428, 183-207.	1.0	119
94	Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium, 2003, 33, 489-495.	2.4	118
95	On the origin of bladder sensing: Tr(i)ps in urology. Neurourology and Urodynamics, 2008, 27, 264-273.	1.5	117
96	Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+ - and volume-activated Clâ^' channels in macrovascular endothelial cells. British Journal of Pharmacology, 1997, 121, 547-555.	5.4	115
97	Outer Pore Architecture of a Ca2+-selective TRP Channel. Journal of Biological Chemistry, 2004, 279, 15223-15230.	3.4	115
98	Irritating channels: the case of TRPA1. Journal of Physiology, 2011, 589, 1543-1549.	2.9	115
99	TRPM8-independent Menthol-induced Ca2+ Release from Endoplasmic Reticulum and Golgi. Journal of Biological Chemistry, 2007, 282, 3325-3336.	3.4	112
100	Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Archiv European Journal of Physiology, 2008, 457, 77-89.	2.8	111
101	Stimulus-specific Modulation of the Cation Channel TRPV4 by PACSIN 3. Journal of Biological Chemistry, 2008, 283, 6272-6280.	3.4	110
102	Activation of volume-regulated chloride currents by reduction of intracellular ionic strength in bovine endothelial cells. Journal of Physiology, 1998, 506, 353-361.	2.9	109
103	TRPV3: time to decipher a poorly understood family member!. Journal of Physiology, 2014, 592, 295-304.	2.9	108
104	Biophysics and structure–function relationship of T-type Ca2+ channels. Cell Calcium, 2006, 40, 97-114.	2.4	107
105	Agonist-Induced Changes in Ca2+ Permeation through the Nociceptor Cation Channel TRPA1. Biophysical Journal, 2010, 98, 773-783.	0.5	107
106	Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. British Journal of Pharmacology, 2001, 134, 453-462.	5.4	106
107	Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Archiv European Journal of Physiology, 2007, 455, 157-168.	2.8	104
108	TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium, 2004, 36, 19-28.	2.4	103

#	Article	IF	Citations
109	Transient Receptor Potential Channels in Sensory Neurons Are Targets of the Antimycotic Agent Clotrimazole. Journal of Neuroscience, 2008, 28, 576-586.	3.6	103
110	HGF/SF and menthol increase human glioblastoma cell calcium and migration. Biochemical and Biophysical Research Communications, 2008, 372, 210-215.	2.1	102
111	Mibefradil (Ro 40m5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium, 1997, 22, 299-311.	2.4	100
112	Decavanadate modulates gating of TRPM4 cation channels. Journal of Physiology, 2004, 560, 753-765.	2.9	99
113	TRPM4 regulates migration of mast cells in mice. Cell Calcium, 2009, 45, 226-232.	2.4	99
114	Cellular Function and Control of Volume-Regulated Anion Channels. Cell Biochemistry and Biophysics, 2001, 35, 263-274.	1.8	96
115	Volume-activated Clâ^ currents in different mammalian non-excitable cell types. Pflugers Archiv European Journal of Physiology, 1994, 428, 364-371.	2.8	94
116	Dominant <i>TRPV4</i> mutations in nonlethal and lethal metatropic dysplasia. American Journal of Medical Genetics, Part A, 2010, 152A, 1169-1177.	1.2	93
117	Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase?. Pflugers Archiv European Journal of Physiology, 2014, 466, 407-414.	2.8	93
118	Fast and Slow Inactivation Kinetics of the Ca2+Channels ECaC1 and ECaC2 (TRPV5 and TRPV6). Journal of Biological Chemistry, 2002, 277, 30852-30858.	3.4	92
119	Store depletion triggers the calcium release-activated calcium current (I CRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Archiv European Journal of Physiology, 1998, 436, 69-74.	2.8	90
120	Epithelial calcium channels: from identification to function and regulation. Pflugers Archiv European Journal of Physiology, 2003, 446, 304-308.	2.8	90
121	Thapsigargin discharges intracellular calcium stores and induces transmembrane currents in human endothelial cells. Pflugers Archiv European Journal of Physiology, 1993, 422, 552-557.	2.8	86
122	TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Archiv European Journal of Physiology, 2008, 456, 529-540.	2.8	86
123	Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nature Chemical Biology, 2014, 10, 188-195.	8.0	86
124	Expression of Human pICln and CIC-6 in Xenopus Oocytes Induces an Identical Endogenous Chloride Conductance. Journal of Biological Chemistry, 1997, 272, 3615-3621.	3.4	84
125	Caveolin-1 modulates the activity of the volume-regulated chloride channel. Journal of Physiology, 1999, 520, 113-119.	2.9	83
126	From TRPs to SOCs, CCEs, and CRACs: consensus and controversies. Cell Calcium, 2003, 33, 293-298.	2.4	83

#	Article	IF	CITATIONS
127	Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflugers Archiv European Journal of Physiology, 1992, 421, 394-396.	2.8	81
128	Increased \hat{l}^2 -Adrenergic Inotropy in Ventricular Myocardium From <i>Trpm4</i> ^{\hat{a}^2/\hat{a}^2} Mice. Circulation Research, 2014, 114, 283-294.	4.5	81
129	Where is TRPV1 expressed in the bladder, do we see the real channel?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 379, 421-425.	3.0	80
130	Modulation of TRPs by PIPs. Journal of Physiology, 2007, 582, 939-944.	2.9	79
131	Mechanisms of Transient Receptor Potential Vanilloid 1 Activation and Sensitization by Allyl Isothiocyanate. Molecular Pharmacology, 2013, 84, 325-334.	2.3	77
132	The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. Journal of Neuroinflammation, 2016, 13 , 130 .	7.2	75
133	The taste transduction channel TRPM5 is a locus for bitterâ€sweet taste interactions. FASEB Journal, 2008, 22, 1343-1355.	0.5	74
134	Pore properties and ionic block of the rabbit epithelial calcium channel expressed in HEK 293 cells. Journal of Physiology, 2001, 530, 183-191.	2.9	73
135	Channelopathies converge on TRPV4. Nature Genetics, 2010, 42, 98-100.	21.4	71
136	Depletion of Intracellular Ca ²⁺ Stores Stimulates the Translocation of Vanilloid Transient Receptor Potential 4-C1 Heteromeric Channels to the Plasma Membrane. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2249-2255.	2.4	71
137	Annexin II Modulates Volume-activated Chloride Currents in Vascular Endothelial Cells. Journal of Biological Chemistry, 1996, 271, 30631-30636.	3.4	70
138	(Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6. Pflugers Archiv European Journal of Physiology, 2003, 446, 401-409.	2.8	70
139	Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflugers Archiv European Journal of Physiology, 2009, 457, 795-807.	2.8	70
140	The Annexin II-p11 Complex Is Involved in Regulated Exocytosis in Bovine Pulmonary Artery Endothelial Cells. Journal of Biological Chemistry, 1998, 273, 19679-19684.	3.4	68
141	A Natural Dominant Negative P2X1 Receptor Due to Deletion of a Single Amino Acid Residue. Journal of Biological Chemistry, 2000, 275, 22611-22614.	3.4	68
142	Dietary capsaicin prevents nonalcoholic fatty liver disease through transient receptor potential vanilloid 1-mediated peroxisome proliferator-activated receptor l'activation. Pflugers Archiv European Journal of Physiology, 2013, 465, 1303-1316.	2.8	68
143	TRPM4 inhibition promotes angiogenesis after ischemic stroke. Pflugers Archiv European Journal of Physiology, 2014, 466, 563-576.	2.8	68
144	<scp>TRPV</scp> 3: a †more than skinny†thannel. Experimental Dermatology, 2013, 22, 447-452.	2.9	67

#	Article	IF	CITATIONS
145	Permeation properties and modulation of volumeâ€activated Cl ^{â^'} â€currents in human endothelial cells. British Journal of Pharmacology, 1994, 112, 1049-1056.	5.4	66
146	Kinetic and pharmacological properties of the calciumm-activated chloride-current in macrovascular endothelial cells. Cell Calcium, 1997, 22, 53-63.	2.4	66
147	Use of a bicistronic GFP-expression vector to characterise ion channels after transfection in mammalian cells. Pflugers Archiv European Journal of Physiology, 1997, 434, 632-638.	2.8	66
148	Modulation of the Transient Receptor Potential Vanilloid Channel TRPV4 by 4α-Phorbol Esters: A Structureâ°'Activity Study. Journal of Medicinal Chemistry, 2009, 52, 2933-2939.	6.4	66
149	Sodium current in single myocardial mouse cells. Pflugers Archiv European Journal of Physiology, 1985, 404, 190-196.	2.8	65
150	80K-H as a New Ca2+ Sensor Regulating the Activity of the Epithelial Ca2+ Channel Transient Receptor Potential Cation Channel V5 (TRPV5). Journal of Biological Chemistry, 2004, 279, 26351-26357.	3.4	65
151	Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium, 2007, 41, 513-523.	2.4	62
152	Histamine-activated, non-selective cation currents and Ca2+ transients in endothelial cells from human umbilical vein. Pflugers Archiv European Journal of Physiology, 1993, 424, 285-293.	2.8	61
153	Mechanical stress induces release of ATP from Ehrlich ascites tumor cells. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1416, 271-284.	2.6	61
154	Aspartate Residues of the Glu-Glu-Asp-Asp (EEDD) Pore Locus Control Selectivity and Permeation of the T-type Ca2+Channel $\hat{l}\pm 1G$. Journal of Biological Chemistry, 2001, 276, 45628-45635.	3.4	61
155	RhoA exerts a permissive effect on volume-regulated anion channels in vascular endothelial cells. American Journal of Physiology - Cell Physiology, 2002, 283, C115-C125.	4.6	61
156	Transient Receptor Potential Cation Channels in Pancreatic \hat{l}^2 Cells. Reviews of Physiology, Biochemistry and Pharmacology, 2011, 161, 87-110.	1.6	61
157	Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1. Pflugers Archiv European Journal of Physiology, 2013, 465, 853-864.	2.8	61
158	Inhibition of Volume-Regulated Anion Channels by Dominant-Negative Caveolin-1. Biochemical and Biophysical Research Communications, 2001, 284, 461-465.	2.1	60
159	Block by fluoxetine of volume-regulated anion channels. British Journal of Pharmacology, 1999, 126, 508-514.	5.4	59
160	TRPs in the Brain. , 2012, 163, 27-64.		59
161	TRPV1 activation prevents nonalcoholic fatty liver through UCP2 upregulation in mice. Pflugers Archiv European Journal of Physiology, 2012, 463, 727-732.	2.8	59
162	ECaC: the gatekeeper of transepithelial Ca2+ transport. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1600, 6-11.	2.3	58

#	Article	IF	CITATIONS
163	Modulation of Voltage-dependent Properties of a Swelling-activated Clâ ⁻ ² Current. Journal of General Physiology, 1997, 110, 313-325.	1.9	56
164	Sulphonic acid derivatives as probes of pore properties of volume-regulated anion channels in endothelial cells. British Journal of Pharmacology, 1999, 128, 35-40.	5.4	56
165	The carboxyl terminus of the epithelial Ca2+ channel ECaC1 is involved in Ca2+-dependent inactivation. Pflugers Archiv European Journal of Physiology, 2003, 445, 584-588.	2.8	56
166	Evidence for the intracellular location of chloride channel (ClC)-type proteins: co-localization of ClC-6a and ClC-6c with the sarco/endoplasmic-reticulum Ca2+ pump SERCA2b. Biochemical Journal, 1998, 330, 1015-1021.	3.7	54
167	Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator. Journal of Physiology, 1999, 515, 75-85.	2.9	53
168	The amino side of the Câ€terminus determines fast inactivation of the Tâ€type calcium channel α 1G. Journal of Physiology, 2001, 530, 35-45.	2.9	53
169	Mechanism of Arachidonic Acid Modulation of the T-type Ca2+ Channel $\hat{l}\pm 1G$. Journal of General Physiology, 2004, 124, 225-238.	1.9	52
170	Modulation of the epithelial Ca 2+ channel ECaC by extracellular pH. Pflugers Archiv European Journal of Physiology, 2001, 442, 237-242.	2.8	51
171	Ligustilide: a novel TRPA1 modulator. Pflugers Archiv European Journal of Physiology, 2011, 462, 841-849.	2.8	51
172	Chloride channels go cell cycling. Journal of Physiology, 2001, 532, 581-581.	2.9	49
173	Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Archiv European Journal of Physiology, 2004, 449, 213-26.	2.8	49
174	Electrophysiological properties of heteromeric TRPV4–C1 channels. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2789-2797.	2.6	49
175	Vascular Hypoxic Preconditioning Relies on TRPV4-Dependent Calcium Influx and Proper Intercellular Gap Junctions Communication. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2241-2249.	2.4	49
176	Cytoskeletal modulation of the response to mechanical stimulation in human vascular endothelial cells. Pflugers Archiv European Journal of Physiology, 1994, 428, 569-576.	2.8	48
177	T-type calcium channels: The never ending story. Cell Calcium, 2006, 40, 81-88.	2.4	48
178	TRPP2 and TRPV4 Form an EGF-Activated Calcium Permeable Channel at the Apical Membrane of Renal Collecting Duct Cells. PLoS ONE, 2013, 8, e73424.	2.5	48
179	Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. ELife, $2019, 8, .$	6.0	47
180	From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Archiv European Journal of Physiology, 2006, 453, 313-321.	2.8	46

#	Article	IF	Citations
181	Voltage-dependent block of endothelial volume-regulated anion channels by calix[4]arenes. American Journal of Physiology - Cell Physiology, 1998, 275, C646-C652.	4.6	45
182	The volume-activated chloride current in human endothelial cells depends on intracellular ATP. Pflugers Archiv European Journal of Physiology, 1994, 427, 184-186.	2.8	44
183	Inhibition of volumeâ€activated chloride currents in endothelial cells by chromones. British Journal of Pharmacology, 1995, 115, 1393-1398.	5.4	43
184	Allyl isothiocyanate sensitizes TRPV1 to heat stimulation. Pflugers Archiv European Journal of Physiology, 2014, 466, 507-515.	2.8	43
185	Cereblon in health and disease. Pflugers Archiv European Journal of Physiology, 2016, 468, 1299-1309.	2.8	43
186	TRPs: Truly Remarkable Proteins. Handbook of Experimental Pharmacology, 2014, 222, 1-12.	1.8	43
187	Inhibition of angiogenesis by blockers of volume-regulated anion channels. General Pharmacology, 2000, 34, 107-116.	0.7	42
188	Epithelial Ca2+ channel (ECAC1) in autosomal dominant idiopathic hypercalciuria. Nephrology Dialysis Transplantation, 2002, 17, 1614-1620.	0.7	42
189	Transient Receptor Potential Vanilloid 1 Activation by Dietary Capsaicin Promotes Urinary Sodium Excretion by Inhibiting Epithelial Sodium Channel α Subunit–Mediated Sodium Reabsorption. Hypertension, 2014, 64, 397-404.	2.7	42
190	Parallel Selection on TRPV6 in Human Populations. PLoS ONE, 2008, 3, e1686.	2.5	42
191	The Endothelial Volume-Regulated Anion Channel, VRAC. Cellular Physiology and Biochemistry, 2000, 10, 313-320.	1.6	41
192	Ca2+modulation of volumeâ€regulated anion channels: evidence for colocalization with storeâ€operated channels. FASEB Journal, 2002, 16, 1-18.	0.5	41
193	The pore of TRP channels: trivial or neglected?. Cell Calcium, 2003, 33, 299-302.	2.4	41
194	Current and upcoming mitochondrial targets for cancer therapy. Seminars in Cancer Biology, 2017, 47, 154-167.	9.6	41
195	Umbellulone modulates TRP channels. Pflugers Archiv European Journal of Physiology, 2011, 462, 861-870.	2.8	40
196	Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels. British Journal of Pharmacology, 2000, 129, 791-801.	5.4	39
197	Myosin light chain phosphorylation-dependent modulation of volume-regulated anion channels in macrovascular endothelium. FEBS Letters, 2000, 466, 346-350.	2.8	39
198	Pore Structure Influences Gating Properties of the T-type Ca2+ Channel $\hat{l}\pm 1G$. Journal of General Physiology, 2003, 121, 529-540.	1.9	39

#	Article	IF	Citations
199	The volume-activated chloride current in endothelial cells from bovine pulmonary artery is not modulated by phosphorylation. Pflugers Archiv European Journal of Physiology, 1996, 431, 540-548.	2.8	38
200	Calcium signalling through nucleotide receptor P2Y2 in cultured human vascular endothelium. Cell Calcium, 1998, 24, 117-127.	2.4	38
201	TRPM4-dependent post-synaptic depolarization is essential for the induction of NMDA receptor-dependent LTP in CA1 hippocampal neurons. Pflugers Archiv European Journal of Physiology, 2016, 468, 593-607.	2.8	38
202	Inhibition of glucose-induced electrical activity in rat pancreatic \hat{l}^2 -cells by DCPIB, a selective inhibitor of volume-sensitive anion currents. European Journal of Pharmacology, 2004, 489, 13-19.	3.5	37
203	TRPV1 is involved in stretch-evoked contractile changes in the rat autonomous bladder model: a study with piperine, a new TRPV1 agonist. Neurourology and Urodynamics, 2007, 26, 440-450.	1.5	37
204	Activation of the volume-sensitive chloride current in vascular endothelial cells requires a permissive intracellular Ca2+ concentration. Pflugers Archiv European Journal of Physiology, 1996, 431, 467-469.	2.8	36
205	Calciummactivated potassium channels in cultured human endothelial cells are not directly modulated by nitric oxide. Cell Calcium, 1997, 21, 291-300.	2.4	36
206	Store-Operated Ca2+ Entry Channels: Still Elusive!. Science Signaling, 2004, 2004, pe36-pe36.	3.6	36
207	TRP Channels in Human Prostate. Scientific World Journal, The, 2010, 10, 1597-1611.	2.1	36
208	The Ubiquitously Expressed plClnProtein Forms Homomeric Complexesin Vitro. Biochemical and Biophysical Research Communications, 1996, 218, 822-827.	2.1	35
209	Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bulletin Et Mémoires De L'Académie Royale De Médecine De Belgique, 2007, 162, 244-53.	0.1	35
210	Characterization of mutations located in exon 18 of the CFTR gene. FEBS Letters, 1998, 437, 1-4.	2.8	34
211	The C-terminal part of the R-domain, but not the PDZ binding motif, of CFTR is involved in interaction with Ca 2+ -activated Cl - channels. Pflugers Archiv European Journal of Physiology, 2001, 442, 280-285.	2.8	34
212	Inhibition of volume-regulated anion channels in cultured endothelial cells by the anti-oestrogens clomiphene and nafoxidine. British Journal of Pharmacology, 2001, 132, 135-142.	5.4	34
213	Inhibition of capacitative Ca2+ entry by a Clâ^' channel blocker in human endothelial cells. European Journal of Pharmacology, 1994, 269, 381-384.	2.6	33
214	Diversity of TRP channel activation. Novartis Foundation Symposium, 2004, 258, 140-9; discussion 149-59, 263-6.	1.1	33
215	Interaction of SiO2 nanoparticles with neuronal cells: Ionic mechanisms involved in the perturbation of calcium homeostasis. International Journal of Biochemistry and Cell Biology, 2015, 66, 101-111.	2.8	32
216	Non-Invasive Multimodality Imaging Directly Shows TRPM4 Inhibition Ameliorates Stroke Reperfusion Injury. Translational Stroke Research, 2019, 10, 91-103.	4.2	31

#	Article	IF	Citations
217	TRPC channels are involved in calcium-dependent migration and proliferation in immortalized GnRH neurons. Cell Calcium, 2011, 49, 387-394.	2.4	30
218	Fetal akinesia in metatropic dysplasia: The combined phenotype of chondrodysplasia and neuropathy?. American Journal of Medical Genetics, Part A, 2011, 155, 2860-2864.	1.2	30
219	The Use of Cystometry in Small Rodents: A Study of Bladder Chemosensation. Journal of Visualized Experiments, 2012, , e3869.	0.3	30
220	Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells. Pflugers Archiv European Journal of Physiology, 2014, 466, 2089-2099.	2.8	30
221	Treatment of hypertension by increasing impaired endothelial <scp>TRPV</scp> 4― <scp>KC</scp> a2.3 interaction. EMBO Molecular Medicine, 2017, 9, 1491-1503.	6.9	30
222	Hypotonically Induced Calcium Release from Intracellular Calcium Stores. Journal of Biological Chemistry, 1996, 271, 4601-4604.	3.4	29
223	Multiple Types of Chloride Channels in Bovine Pulmonary Artery Endothelial Cells. Journal of Vascular Research, 1997, 34, 220-228.	1.4	29
224	Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells. American Journal of Physiology - Cell Physiology, 2006, 290, C1287-C1296.	4.6	29
225	Differential Effects of Bitter Compounds on the Taste Transduction Channels TRPM5 and IP3 Receptor Type 3. Chemical Senses, 2014, 39, 295-311.	2.0	29
226	TRPV4 Stimulation Releases ATP via Pannexin Channels in Human Pulmonary Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 87-95.	2.9	29
227	Potent block of volumeâ€activated chloride currents in endothelial cells by the uncharged form of quinine and quinidine. British Journal of Pharmacology, 1996, 118, 1869-1871.	5.4	28
228	Is the Volume-Regulated Anion Channel VRAC a "Water-Permeable―Channel?. Neurochemical Research, 2004, 29, 3-8.	3.3	28
229	Tasty and healthy TR(i)Ps. EMBO Reports, 2011, 12, 1094-1101.	4.5	28
230	Activation of TRPV4 channels reduces migration of immortalized neuroendocrine cells. Journal of Neurochemistry, 2011, 116, 606-615.	3.9	28
231	Functional effects of expression of hslo Ca2+ activated K+ channels in cultured macrovascular endothelial cells. Cell Calcium, 1997, 22, 497-506.	2.4	27
232	ATP and nitric oxide modulate a Ca2+-activated non-selective cation current in macrovascular endothelial cells. Pflugers Archiv European Journal of Physiology, 2002, 444, 438-445.	2.8	27
233	Inhibition of VRAC by c-Src tyrosine kinase targeted to caveolae is mediated by the Src homology domains. American Journal of Physiology - Cell Physiology, 2001, 281, C248-C256.	4.6	26
234	A TRP channel-steroid marriage. Nature Cell Biology, 2008, 10, 1383-1384.	10.3	26

#	Article	IF	Citations
235	TRPCs, GPCRs and the Bayliss effect. EMBO Journal, 2009, 28, 4-5.	7.8	26
236	Hypotonicity and Thrombin Activate Taurine Efflux in BC3H1 and C2C12Myoblasts That Is Down Regulated during Differentiation. Biochemical and Biophysical Research Communications, 1997, 232, 74-79.	2.1	25
237	TRPM4-specific blocking antibody attenuates reperfusion injury in a rat model of stroke. Pflugers Archiv European Journal of Physiology, 2019, 471, 1455-1466.	2.8	25
238	Alternative splicing of CIC-6 (a member of the CIC chloride-channel family) transcripts generates three truncated isoforms one of which, CIC-6c, is kidney-specific. Biochemical Journal, 1997, 325, 269-276.	3.7	24
239	Pflï; ½ gers Archiv and the advent of modern electrophysiology. Pflugers Archiv European Journal of Physiology, 2003, 447, 267-271.	2.8	24
240	Extracellular Ca2+ Modulates the Effects of Protons on Gating and Conduction Properties of the T-type Ca2+ Channel $\hat{l}\pm 1G$ (CaV3.1). Journal of General Physiology, 2003, 121, 511-528.	1.9	24
241	Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Reviews of Physiology, Biochemistry and Pharmacology, 2018, 174, 81-156.	1.6	24
242	Suppressive interactions between mutations located in the two nucleotide binding domains of CFTR. FEBS Letters, 2000, 473, 149-153.	2.8	22
243	Modulation of the cold-activated cation channel TRPM8 by surface charge screening. Journal of Physiology, 2010, 588, 315-324.	2.9	22
244	Bimodal effect of alkalization on the polycystin transient receptor potential channel, PKD2L1. Pflugers Archiv European Journal of Physiology, 2011, 461, 507-513.	2.8	22
245	Insulin downregulates the expression of the Ca2+-activated nonselective cation channel TRPM5 in pancreatic islets from leptin-deficient mouse models. Pflugers Archiv European Journal of Physiology, 2014, 466, 611-621.	2.8	22
246	Evidence for common structural determinants of activation and inactivation in T-type Ca2+ channels. Pflugers Archiv European Journal of Physiology, 2006, 453, 189-201.	2.8	21
247	Channelling cold reception. Nature, 2007, 448, 147-148.	27.8	21
248	Pressing and squeezing with Piezos. EMBO Reports, 2010, 11, 902-903.	4.5	21
249	Echinochrome A regulates phosphorylation of phospholamban Ser16 and Thr17 suppressing cardiac SERCA2A Ca2+ reuptake. Pflugers Archiv European Journal of Physiology, 2015, 467, 2151-2163.	2.8	21
250	TRPV4 is associated with central rather than nephrogenic osmoregulation. Pflugers Archiv European Journal of Physiology, 2016, 468, 1595-1607.	2.8	21
251	Cardiac Response to Oxidative Stress Induced by Mitochondrial Dysfunction. Reviews of Physiology, Biochemistry and Pharmacology, 2016, 170, 101-127.	1.6	21
252	The endothelial saga: the past, the present, the future. Pflugers Archiv European Journal of Physiology, 2010, 459, 787-792.	2.8	20

#	Article	IF	CITATIONS
253	Transient Receptor Potential (TRP) Cation Channels in Diabetes. Current Topics in Medicinal Chemistry, 2013, 13, 258-269.	2.1	20
254	Inhibition of endothelium-dependent vasorelaxation by extracellular K+: a novel controlling signal for vascular contractility. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H329-H339.	3.2	19
255	TRP channels: novel gating properties and physiological functions. Journal of Physiology, 2005, 567, 33-34.	2.9	19
256	Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells. BMC Physiology, 2001, $1,3.$	3.6	18
257	Temperature-dependent calcium-induced calcium release via InsP3 receptors in mouse olfactory ensheathing glial cells. Cell Calcium, 2012, 52, 113-123.	2.4	18
258	Amazing T-type calcium channels: updating functional properties in health and disease. Pflugers Archiv European Journal of Physiology, 2014, 466, 623-626.	2.8	18
259	Interaction of the protein phosphatase 2A with the regulatory domain of the cystic fibrosis transmembrane conductance regulator channel. FEBS Letters, 2005, 579, 3392-3396.	2.8	17
260	Functional Characterization of the CFTR R Domain Using CFTR/MDR1 Hybrid and Deletion Constructsâ€. Biochemistry, 1999, 38, 14988-14998.	2.5	16
261	The angiotensin receptor blocker and PPAR- \hat{l}^3 agonist, telmisartan, delays inactivation of voltage-gated sodium channel in rat heart: novel mechanism of drug action. Pflugers Archiv European Journal of Physiology, 2012, 464, 631-643.	2.8	16
262	TRPV4 participates in pressureâ€induced inhibition of renin secretion by juxtaglomerular cells. Journal of Physiology, 2016, 594, 7327-7340.	2.9	16
263	Comparison of Anti-oncotic Effect of TRPM4 Blocking Antibody in Neuron, Astrocyte and Vascular Endothelial Cell Under Hypoxia. Frontiers in Cell and Developmental Biology, 2020, 8, 562584.	3.7	16
264	What Do We Really Know and What Do We Need to Know: Some Controversies, Perspectives, and Surprises. Handbook of Experimental Pharmacology, 2014, 223, 1239-1280.	1.8	16
265	Rescue of functional î"F508-CFTR channels by co-expression with truncated CFTR constructs in COS-1 cells. FEBS Letters, 2003, 554, 173-178.	2.8	15
266	TRPM4 inhibition by meclofenamate suppresses Ca2+-dependent triggered arrhythmias. European Heart Journal, 2022, 43, 4195-4207.	2.2	15
267	Electrogenic Na+/K+-transport in human endothelial cells. Pflugers Archiv European Journal of Physiology, 1993, 424, 301-307.	2.8	14
268	Responses of endothelial cells to hypotonic solutions: lack of regulatory volume decrease. Pflugers Archiv European Journal of Physiology, 1994, 428, 94-96.	2.8	14
269	Introduction (Transient Receptor Potential TRP Channels as Therapeutic Drug Targets: Next Round!). Current Topics in Medicinal Chemistry, 2013, 13, 244-246.	2.1	14
270	Gating modulation by heat of the polycystin transient receptor potential channel PKD2L1 (TRPP3). Pflugers Archiv European Journal of Physiology, 2014, 466, 1933-1940.	2.8	14

#	Article	IF	Citations
271	Single point mutations of aromatic residues in transmembrane helices 5 and -6 differentially affect TRPV4 activation by 4α-PDD and hypotonicity: Implications for the role of the pore region in regulating TRPV4 activity. Cell Calcium, 2014, 55, 38-47.	2.4	14
272	Nonselective Ion Pathways in Human Endothelial Cells. , 1993, 66, 269-280.		14
273	Transient Receptor Potentials (TRPs) and Anaphylaxis. Current Allergy and Asthma Reports, 2013, 13, 93-100.	5.3	13
274	Effects of Cyanide and Deoxyglucose on Ca ²⁺ Signalling in Macrovascular Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 2000, 7, 155-168.	1.7	12
275	Chronic exposure to EGF affects trafficking and function of ENaC channel in cystic fibrosis cells. Biochemical and Biophysical Research Communications, 2005, 331, 503-511.	2.1	12
276	Tetrahydrobiopterin enhances mitochondrial biogenesis and cardiac contractility via stimulation of PGC1 $\hat{1}\pm$ signaling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165524.	3.8	12
277	Amplitude modulation of Ca2+ signals induced by histamine in human endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 287-291.	4.1	11
278	Do voltage-gated Kv1.1 and inward rectifier Kir2.1 potassium channels form heteromultimers?. FEBS Letters, 1996, 390, 280-284.	2.8	11
279	The intracellular tyrosine residues of the ATP-gated P2X1ion channel are essential for its function. FEBS Letters, 2002, 524, 15-19.	2.8	11
280	Examination of Single Nucleotide Polymorphisms (SNPs) in Transient Receptor Potential (TRP) Ion Channels in Chronic Fatigue Syndrome Patients. Immunology and Immunogenetics Insights, 2015, 7, III.S25147.	1.0	11
281	Electrophysiological characterization of voltage-dependent calcium currents and TRPV4 currents in human pulmonary fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L603-L614.	2.9	11
282	BH4 activates CaMKK2 and rescues the cardiomyopathic phenotype in rodent models of diabetes. Life Science Alliance, 2020, 3, e201900619.	2.8	10
283	The GXGXG motif in the pICln protein is not important for the nucleotide sensitivity of the pICln -induced Clâ^' current in Xenopus oocytes. FEBS Letters, 1998, 426, 171-173.	2.8	9
284	A Special Issue on channelopathies. Pflugers Archiv European Journal of Physiology, 2010, 460, 221-222.	2.8	9
285	Development and characterization of a monoclonal antibody blocking human TRPM4 channel. Scientific Reports, 2021, 11, 10411.	3.3	9
286	Calcium-impermeable monovalent cation channels: a TRP connection?. British Journal of Pharmacology, 2003, 138, 5-7.	5.4	8
287	Polycystins under Pressure. Cell, 2009, 139, 466-467.	28.9	8
288	Transient Receptor Potential (TRP) Channels in the Brain: the Good and the Ugly. European Review, 2012, 20, 343-355.	0.7	8

#	Article	IF	CITATIONS
289	<scp>VRAC</scp> s swallow platinum drugs. EMBO Journal, 2015, 34, 2985-2987.	7.8	8
290	Phosphorylation site independent single R-domain mutations affect CFTR channel activity. FEBS Letters, 1998, 439, 121-126.	2.8	7
291	Is there a link between protein pICln and volume-regulated anion channels?. Biochemical Journal, 1998, 331, 347-352.	3.7	7
292	Different Ligands of the TRPV3 Cation Channel Cause Distinct Conformational Changes as Revealed by Intrinsic Tryptophan Fluorescence Quenching. Journal of Biological Chemistry, 2015, 290, 12964-12974.	3.4	7
293	Simultaneous Measurement of Membrane Capacitance and Whole Cell Currents during Cell Swelling in Macrovascular Endothelium. Cellular Physiology and Biochemistry, 1997, 7, 19-24.	1.6	6
294	Are Brain TRPs Viable Targets for Curing Neurodegenerative Disorders and Improving Mental Health?. , 2015, , 419-456.		6
295	Mechanisms of Thermosensation in TRP Channels. Springer Series in Biophysics, 2008, , 101-120.	0.4	5
296	Calcium-activated chloride channels in vascular endothelial cells. Current Topics in Membranes, 2002, 53, 327-344.	0.9	4
297	Transient receptor potential channel promiscuity frustrates constellation pharmacology. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3338-E3338.	7.1	4
298	The asparagine 533 residue in the outer pore loop region of the mouse PKD2L1 channel is essential for its voltage-dependent inactivation. FEBS Open Bio, 2017, 7, 1392-1401.	2.3	4
299	The volume-activated chloride current in endothelial cells from bovine pulmonary artery is not modulated by phosphorylation. Pflugers Archiv European Journal of Physiology, 1996, 431, 540-548.	2.8	4
300	Effects of trapidil-derivatives on calcium channel currents in isolated ventricular cells from mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 1988, 337, 454-8.	3.0	3
301	Transient Receptor Potential Dysfunctions in Hereditary Diseases. , 2015, , 13-33.		3
302	Overview: Potassium Channels in Vascular Endothelial Cells. , 2001, , 639-650.		3
303	Ion Channels in Nonexcitable Cells. , 2001, , 485-507.		2
304	Ion Channels in Vascular Endothelium. , 2001, , 481-497.		2
305	Eduard Friedrich Wilhelm Pflüger and the Nobel Prize. Pflugers Archiv European Journal of Physiology, 2014, 466, 2019-2020.	2.8	2
306	Molecular physiology of anion channels: dual function proteins and new structural motifs—a special issue. Pflugers Archiv European Journal of Physiology, 2016, 468, 369-370.	2.8	2

#	Article	IF	CITATIONS
307	TRP Channels. , 2007, , 399-423.		2
308	TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of General Physiology, 2008, 132, i2-i2.	1.9	2
309	Ion Channels in Nonexcitable Cells. , 1995, , 315-329.		2
310	Bicistronic GFP Expression Vectors as a Tool to Study Ion Channels in Transiently Transfected Cultured Cells., 2001,, 167-186.		1
311	Introduction to TRPs: A Quest for Novel Drug Targets. Methods in Pharmacology and Toxicology, 2012, , 3-12.	0.2	0
312	An Editor's farewell!. Pflugers Archiv European Journal of Physiology, 2015, 467, 2399-2400.	2.8	0
313	REPLY TO THORNELOE ET AL Physiological Reviews, 2017, 97, 1233-1234.	28.8	0
314	Lipid and protein interactions at the Câ€terminal part of TRPM4. FASEB Journal, 2009, 23, 1000.6.	0.5	0
315	EGFR augments cell proliferation in polycystic kidney disease through activation of a novel ion channel. FASEB Journal, 2009, 23, 604.6.	0.5	0
316	Functional characterization of TMEM16 anion channels. FASEB Journal, 2010, 24, 608.12.	0.5	0
317	Ano6 functions as a positive modulator of volumeâ€regulated anion channels. FASEB Journal, 2012, 26, 695.2.	0.5	O