Amy V Callaghan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10484253/publications.pdf

Version: 2024-02-01

24 1,902 17 22 papers citations h-index g-index

25 25 25 2037 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biogeochemistry of Microbial Coal-Bed Methane. Annual Review of Earth and Planetary Sciences, 2011, 39, 617-656.	11.0	366
2	Metagenomic analysis and metabolite profiling of deep–sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Frontiers in Microbiology, 2013, 4, 50.	3.5	257
3	Microbial transformation of the Deepwater Horizon oil spillââ,¬â€past, present, and future perspectives. Frontiers in Microbiology, 2014, 5, 603.	3.5	155
4	Diversity of Benzyl- and Alkylsuccinate Synthase Genes in Hydrocarbon-Impacted Environments and Enrichment Cultures. Environmental Science & Enp.; Technology, 2010, 44, 7287-7294.	10.0	154
5	Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin. FEMS Microbiology Ecology, 2012, 81, 26-42.	2.7	127
6	Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochemical and Biophysical Research Communications, 2008, 366, 142-148.	2.1	116
7	Comparison of Mechanisms of Alkane Metabolism under Sulfate-Reducing Conditions among Two Bacterial Isolates and a Bacterial Consortium. Applied and Environmental Microbiology, 2006, 72, 4274-4282.	3.1	114
8	Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Frontiers in Microbiology, 2013, 4, 89.	3. 5	105
9	Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Current Opinion in Biotechnology, 2013, 24, 506-515.	6.6	81
10	Anaerobic Biodegradation of $\langle i \rangle n \langle i \rangle$ -Hexadecane by a Nitrate-Reducing Consortium. Applied and Environmental Microbiology, 2009, 75, 1339-1344.	3.1	77
11	Biosphere frontiers of subsurface life in the sedimented hydrothermal system of Guaymas Basin. Frontiers in Microbiology, 2014, 5, 362.	3.5	74
12	Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ⟨i⟩â€~Smithella'⟨/i⟩ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environmental Microbiology, 2016, 18, 2604-2619.	3.8	71
13	Metabolomic and Metagenomic Analysis of Two Crude Oil Production Pipelines Experiencing Differential Rates of Corrosion. Frontiers in Microbiology, 2017, 8, 99.	3.5	38
14	Impact of Organosulfur Content on Diesel Fuel Stability and Implications for Carbon Steel Corrosion. Environmental Science & E	10.0	36
15	Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family Desulfarculaceae. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1242-1248.	1.7	29
16	Youngiibacter fragilis gen. nov., sp. nov., isolated from natural gas production-water and reclassification of Acetivibrio multivorans as Youngiibacter multivorans comb. nov International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 198-205.	1.7	24
17	Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions. FEMS Microbiology Ecology, 2015, 91, 1-14.	2.7	24
18	Anaerobic hydrocarbon biodegradation and biocorrosion of carbon steel in marine environments: The impact of different ultra low sulfur diesels and bioaugmentation. International Biodeterioration and Biodegradation, 2017, 118, 45-56.	3.9	24

#	Article	IF	CITATIONS
19	Transcriptional response of <i>Desulfatibacillum alkenivorans </i> AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiology Ecology, 2016, 92, fiw062.	2.7	13
20	Microbial enzymes that oxidize hydrocarbons. Frontiers in Microbiology, 2013, 4, 338.	3.5	10
21	Genome Sequence of Youngiibacter fragilis, the Type Strain of the Genus <i>Youngiibacter</i> Cenome Announcements, 2014, 2, .	0.8	4
22	Surface and Subsurface Coal Environments: From Environmental Formation and Chemistry to Microbial Communities., 2018, , 1-23.		1
23	Surface and Subsurface Coal Environments: From Environmental Formation and Chemistry to Microbial Communities., 2019,, 179-201.		O
24	The Complete Genome Sequence of <i>n</i> -Alkane-Degrading Desulfoglaeba alkanexedens ALDC Reveals Multiple Alkylsuccinate Synthase Gene Clusters. Microbiology Resource Announcements, 2020, 9, .	0.6	0