Paul A Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	4th generation nonsteroidal aromatase inhibitors: An iterative SAR-guided design, synthesis, and biological evaluation towards picomolar dual binding inhibitors. European Journal of Medicinal Chemistry, 2022, 240, 114569.	5.5	4
2	Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer Medicine, 2021, 10, 2812-2825.	2.8	51
3	Steroid Sulfation in Adrenal Tumors. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3385-3397.	3.6	4
4	Steroid Sulphatase and Its Inhibitors: Past, Present and Future. Molecules, 2021, 26, 2852.	3.8	30
5	11-Oxygenated Estrogens Are a Novel Class of Human Estrogens but Do not Contribute to the Circulating Estrogen Pool. Endocrinology, 2021, 162, .	2.8	18
6	Steroid sulfatase inhibiting lanostane triterpenes – Structure activity relationship and in silico insights. Bioorganic Chemistry, 2020, 95, 103495.	4.1	11
7	A new series of aryl sulfamate derivatives: Design, synthesis, and biological evaluation. Bioorganic and Medicinal Chemistry, 2020, 28, 115406.	3.0	16
8	1H NMR-MS-based heterocovariance as a drug discovery tool for fishing bioactive compounds out of a complex mixture of structural analogues. Scientific Reports, 2019, 9, 11113.	3.3	28
9	Synthesis and inÂvitro evaluation of piperazinyl-ureido sulfamates as steroid sulfatase inhibitors. European Journal of Medicinal Chemistry, 2019, 182, 111614.	5.5	11
10	SULFATION PATHWAYS: A role for steroid sulphatase in intracrine regulation of endometrial decidualisation. Journal of Molecular Endocrinology, 2018, 61, M57-M65.	2.5	8
11	NNT is a key regulator of adrenal redox homeostasis and steroidogenesis in male mice. Journal of Endocrinology, 2018, 236, 13-28.	2.6	46
12	Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-crystal Structure. Journal of Medicinal Chemistry, 2018, 61, 1031-1044.	6.4	91
13	SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. Journal of Molecular Endocrinology, 2018, 61, T271-T283.	2.5	34
14	Nicotinamide Nucleotide Transhydrogenase as a Novel Treatment Target in Adrenocortical Carcinoma. Endocrinology, 2018, 159, 2836-2849.	2.8	25
15	Steroid sulfation research has come a long way. Journal of Molecular Endocrinology, 2018, 61, E5-E6.	2.5	3
16	Estrogen Activation by Steroid Sulfatase Increases Colorectal Cancer Proliferation via GPER. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4435-4447.	3.6	31
17	Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy. Frontiers in Pharmacology, 2017, 8, 103.	3.5	25
18	Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 2762-2767.	3.0	27

PAUL A FOSTER

#	Article	IF	CITATIONS
19	In touch with your feminine side: how oestrogen metabolism impacts prostate cancer. Endocrine-Related Cancer, 2016, 23, R249-R266.	3.1	16
20	The Regulation of Steroid Action by Sulfation and Desulfation. Endocrine Reviews, 2015, 36, 526-563.	20.1	310
21	Steroid Sulfatase. , 2015, , 1-4.		0
22	Steroid Sulfatase. , 2015, , 4358-4360.		0
23	The In Vitro and In Vivo Activity of the Microtubule Disruptor STX140 Is Mediated by Hif-1 Alpha and CAIX Expression. Anticancer Research, 2015, 35, 5249-61.	1.1	8
24	In vivo and in vitro properties of STX2484: a novel non-steroidal anti-cancer compound active in taxane-resistant breast cancer. British Journal of Cancer, 2014, 111, 300-308.	6.4	12
25	Oestrogen and colorectal cancer: mechanisms and controversies. International Journal of Colorectal Disease, 2013, 28, 737-749.	2.2	49
26	STX2171, a 17β-hydroxysteroid dehydrogenase type 3 inhibitor, is efficacious in vivo in a novel hormone-dependent prostate cancer model. Endocrine-Related Cancer, 2013, 20, 53-64.	3.1	17
27	STX140, but Not Paclitaxel, Inhibits Mammary Tumour Initiation and Progression in C3(1)/SV40 T/t-Antigen Transgenic Mice. PLoS ONE, 2013, 8, e80305.	2.5	20
28	Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers. Journal of Endocrinology, 2012, 212, 99-110.	2.6	118
29	Steroid Sulfatase. , 2011, , 3528-3530.		Ο
30	Chimeric microtubule disruptors. Chemical Communications, 2010, 46, 2907.	4.1	26
31	BCRP expression does not result in resistance to STX140 in vivo, despite the increased expression of BCRP in A2780 cells in vitro after long-term STX140 exposure. British Journal of Cancer, 2009, 100, 476-486.	6.4	16
32	The Development of Steroid Sulfatase Inhibitors for Hormoneâ€Dependent Cancer Therapy. Annals of the New York Academy of Sciences, 2009, 1155, 80-87.	3.8	37
33	Development of hormone-dependent prostate cancer models for the evaluation of inhibitors of 17β-hydroxysteroid dehydrogenase Type 3. Molecular and Cellular Endocrinology, 2009, 301, 251-258.	3.2	16
34	STX140 and STX641 cause apoptosis via the intrinsic mitochondrial pathway and down-regulate survivin and XIAP expression in ovarian and prostate cancer cells. Anticancer Research, 2009, 29, 3751-7.	1.1	8
35	Efficacy of three potent steroid sulfatase inhibitors: pre-clinical investigations for their use in the treatment of hormone-dependent breast cancer. Breast Cancer Research and Treatment, 2008, 111, 129-138.	2.5	34
36	2-MeOE2bisMATE and 2-EtE2bisMATE induce cell cycle arrest and apoptosis in breast cancer xenografts as shown by a novel exÂvivo technique. Breast Cancer Research and Treatment, 2008, 111, 251-260.	2.5	29

PAUL A FOSTER

#	Article	lF	CITATIONS
37	17βâ€hydroxysteroid dehydrogenase Type 1, and not Type 12, is a target for endocrine therapy of hormoneâ€dependent breast cancer. International Journal of Cancer, 2008, 122, 1931-1940.	5.1	99
38	The in vivo properties of STX243: a potent angiogenesis inhibitor in breast cancer. British Journal of Cancer, 2008, 99, 1433-1441.	6.4	6
39	2-Methoxyoestradiol-3,17-O,O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer. British Journal of Cancer, 2008, 99, 1842-1848.	6.4	37
40	Structure–Activity Relationships of C-17 Cyano-Substituted Estratrienes as Anticancer Agents. Journal of Medicinal Chemistry, 2008, 51, 1295-1308.	6.4	50
41	A New Therapeutic Strategy against Hormone-Dependent Breast Cancer: The Preclinical Development of a Dual Aromatase and Sulfatase Inhibitor. Clinical Cancer Research, 2008, 14, 6469-6477.	7.0	37
42	STX140 Is Efficacious <i>In vitro</i> and <i>In vivo</i> in Taxane-Resistant Breast Carcinoma Cells. Clinical Cancer Research, 2008, 14, 597-606.	7.0	42
43	Anticancer steroid sulfatase inhibitors: synthesis of a potent fluorinated second-generation agent, <i>in vitro</i> and <i>in vivo</i> activities, molecular modeling, and protein crystallography. Molecular Cancer Therapeutics, 2008, 7, 2435-2444.	4.1	39
44	Recent Developments of Steroid Sulfatase Inhibitors as Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 732-738.	1.7	33
45	The Use of Steroid Sulfatase Inhibitors as a Novel Therapeutic Strategy Against Hormone-Dependent Endometrial Cancer. Endocrinology, 2008, 149, 4035-4042.	2.8	39
46	A new micronized formulation of 2-methoxyestradiol-bis-sulfamate (STX140) is therapeutically potent against breast cancer. Anticancer Research, 2008, 28, 577-81.	1.1	10
47	A comparison of two orally bioavailable anti-cancer agents, IRC-110160 and STX140. Anticancer Research, 2008, 28, 1483-91.	1.1	8
48	The therapeutic potential of a series of orally bioavailable anti-angiogenic microtubule disruptors as therapy for hormone-independent prostate and breast cancers. British Journal of Cancer, 2007, 97, 1673-1682.	6.4	22
49	In vivo inhibition of angiogenesis by sulphamoylated derivatives of 2-methoxyoestradiol. British Journal of Cancer, 2007, 96, 1368-1376.	6.4	39
50	In vivo Efficacy of STX213, A Second-Generation Steroid Sulfatase Inhibitor, for Hormone-Dependent Breast Cancer Therapy. Clinical Cancer Research, 2006, 12, 5543-5549.	7.0	62
51	C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14452-14457.	7.1	87
52	Natriuretic Peptide Receptor-C Regulates Coronary Blood Flow and Prevents Myocardial Ischemia/Reperfusion Injury. Circulation, 2004, 110, 1231-1235.	1.6	134
53	Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1386-1391.	7.1	195
54	Endothelial cells play an essential role in the thermal hyperalgesia induced by nerve growth factor. FASEB Journal, 2003, 17, 1703-1705.	0.5	18

#	Article	IF	CITATIONS
55	Cellular pathology changes in rat skin following intradermal injection of nerve growth factor: neutrophil-dependent and -independent events. Journal of Pathology, 2002, 197, 245-255.	4.5	12
56	A comparative study of the ability of calcitonin gene-related peptide and adrenomedullin13-52 to modulate microvascular but not thermal hyperalgesia responses. British Journal of Pharmacology, 2000, 130, 1589-1596.	5.4	29