Dennis W Dickson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048003/publications.pdf

Version: 2024-02-01

834 papers 111,633 citations

152 h-index 294 g-index

899 all docs

899 docs citations

899 times ranked 59675 citing authors

#	Article	IF	CITATIONS
1	Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron, 2011, 72, 245-256.	8.1	4,176
2	Diagnosis and management of dementia with Lewy bodies. Neurology, 2017, 89, 88-100.	1.1	2,805
3	Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron, 2004, 44, 601-607.	8.1	2,653
4	Clinical diagnostic criteria for dementia associated with Parkinson's disease. Movement Disorders, 2007, 22, 1689-1707.	3.9	2,497
5	National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach. Acta Neuropathologica, 2012, 123, 1-11.	7.7	2,002
6	National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's and Dementia, 2012, 8, 1-13.	0.8	1,968
7	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
8	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
9	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	21.4	1,676
10	The neuropathological diagnosis of Alzheimer's disease. Molecular Neurodegeneration, 2019, 14, 32.	10.8	1,497
11	Criteria for the diagnosis of corticobasal degeneration. Neurology, 2013, 80, 496-503.	1.1	1,445
12	Enhanced Neurofibrillary Degeneration in Transgenic Mice Expressing Mutant Tau and APP. Science, 2001, 293, 1487-1491.	12.6	1,409
13	Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Movement Disorders, 2017, 32, 853-864.	3.9	1,402
14	Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genetics, 2000, 25, 402-405.	21.4	1,254
15	Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease. JAMA - Journal of the American Medical Association, 2010, 303, 1832.	7.4	1,064
16			
16	Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathologica, 2014, 128, 755-766.	7.7	1,060
17	Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathologica, 2014, 128, 755-766. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathologica, 2007, 114, 5-22.	7.7	1,060 978

#	Article	IF	CITATIONS
19	Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain, 2019, 142, 1503-1527.	7.6	873
20	Pathology of Neurodegenerative Diseases. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028035.	5.5	865
21	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 2010, 119, 1-4.	7.7	854
22	Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia, 1993, 7, 75-83.	4.9	828
23	Molecular basis of phenotypic variability in sporadc creudeldtâ€jakob disease. Annals of Neurology, 1996, 39, 767-778.	5.3	819
24	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
25	TDPâ€43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Annals of Neurology, 2007, 61, 435-445.	5.3	753
26	Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurology, The, 2009, 8, 1150-1157.	10.2	734
27	Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study. Lancet Neurology, The, 2011, 10, 785-796.	10.2	733
28	ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron, 2015, 88, 678-690.	8.1	716
29	The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathologica, 2016, 131, 75-86.	7.7	708
30	Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain, 2006, 129, 1385-1398.	7.6	624
31	The Pathogenesis of Senile Plaques. Journal of Neuropathology and Experimental Neurology, 1997, 56, 321-339.	1.7	619
32	Parkinson's Disease and Parkinsonism: Neuropathology. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009258-a009258.	6.2	593
33	Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiology of Aging, 1992, 13, 179-189.	3.1	580
34	Neuropathologic Features of Amnestic Mild Cognitive Impairment. Archives of Neurology, 2006, 63, 665.	4.5	562
35	Neuropathology of nondemented aging: Presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 2009, 30, 1026-1036.	3.1	558
36	Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780.	30.7	547

#	Article	IF	CITATIONS
37	The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. Journal of Clinical Investigation, 2007, 117, 648-658.	8.2	545
38	AÎ ² 42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice. Neuron, 2005, 47, 191-199.	8.1	524
39	Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7607-7612.	7.1	523
40	Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathologica, 2013, 126, 829-844.	7.7	506
41	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	21.4	502
42	TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron, 2017, 95, 808-816.e9.	8.1	493
43	The Levels of Soluble versus Insoluble Brain A \hat{I}^2 Distinguish Alzheimer's Disease from Normal and Pathologic Aging. Experimental Neurology, 1999, 158, 328-337.	4.1	490
44	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	21.4	479
45	ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nature Communications, 2014, 5, 3996.	12.8	463
46	Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice. Journal of Neuroscience, 2010, 30, 10851-10859.	3.6	457
47	Genetic evidence for the involvement of Ï,, in progressive supranuclear palsy. Annals of Neurology, 1997, 41, 277-281.	5.3	433
48	Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nature Genetics, 2012, 44, 200-205.	21.4	428
49	Strikingly Different Clinicopathological Phenotypes Determined by Progranulin-Mutation Dosage. American Journal of Human Genetics, 2012, 90, 1102-1107.	6.2	414
50	TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nature Neuroscience, 2018, 21, 228-239.	14.8	404
51	Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis. PLoS Genetics, 2008, 4, e1000193.	3.5	393
52	Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiology of Aging, 1995, 16, 285-298.	3.1	391
53	An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathologica Communications, 2016, 4, 58.	5.2	388
54	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380

#	Article	lF	Citations
55	Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 2009, 117, 15-18.	7.7	377
56	Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathologica, 2011, 122, 137-153.	7.7	375
57	Parkinson Disease Neuropathology. Archives of Neurology, 2002, 59, 102.	4.5	366
58	A yeast functional screen predicts new candidate ALS disease genes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20881-20890.	7.1	365
59	Neuropathology of Parkinson disease. Parkinsonism and Related Disorders, 2018, 46, S30-S33.	2.2	363
60	Human whole genome genotype and transcriptome data for Alzheimer $\hat{a} \in \mathbb{N}$ s and other neurodegenerative diseases. Scientific Data, 2016, 3, 160089.	5. 3	361
61	Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathologica, 2011, 122, 187-204.	7.7	357
62	Pathology and Biology of the Lewy Body. Journal of Neuropathology and Experimental Neurology, 1993, 52, 183-191.	1.7	356
63	Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain, 2012, 135, 794-806.	7.6	355
64	Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case-control study. Lancet Neurology, The, 2012, 11, 868-877.	10.2	355
65	Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain, 2009, 132, 583-591.	7.6	344
66	CNS small vessel disease. Neurology, 2019, 92, 1146-1156.	1.1	343
67	TDP-43 is a key player in the clinical features associated with Alzheimer's disease. Acta Neuropathologica, 2014, 127, 811-824.	7.7	336
68	Dimeric Amyloid \hat{l}^2 Protein Rapidly Accumulates in Lipid Rafts followed by Apolipoprotein E and Phosphorylated Tau Accumulation in the Tg2576 Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2004, 24, 3801-3809.	3.6	334
69	<i>C9ORF72</i> repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science, 2015, 348, 1151-1154.	12.6	332
70	Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nature Neuroscience, 2015, 18, 1175-1182.	14.8	330
71	Evidence that incidental Lewy body disease is pre-symptomatic Parkinson's disease. Acta Neuropathologica, 2008, 115, 437-444.	7.7	329
72	AÎ ² 40 Inhibits Amyloid Deposition <i>In Vivo</i> . Journal of Neuroscience, 2007, 27, 627-633.	3.6	327

#	Article	IF	Citations
73	TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson's disease. Molecular Neurodegeneration, 2013, 8, 19.	10.8	323
74	Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain, 2012, 135, 765-783.	7.6	322
75	Neuropathology of variants of progressive supranuclear palsy. Current Opinion in Neurology, 2010, 23, 394-400.	3.6	312
76	Colocalization of Tau and Alpha-Synuclein Epitopes in Lewy Bodies. Journal of Neuropathology and Experimental Neurology, 2003, 62, 389-397.	1.7	306
77	Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias. PLoS Genetics, 2014, 10, e1004606.	3.5	305
78	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
79	Neurodegenerative disorders with extensive tau pathology: A comparative study and review. Annals of Neurology, 1996, 40, 139-148.	5.3	301
80	Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Cell, 2020, 180, 633-644.e12.	28.9	300
81	Age-specific and Sex-specific Prevalence and Incidence of Mild Cognitive Impairment, Dementia, and Alzheimer Dementia in Blacks and Whites. Alzheimer Disease and Associated Disorders, 2012, 26, 335-343.	1.3	297
82	Neuropathology of Frontotemporal Lobar Degeneration-Tau (FTLD-Tau). Journal of Molecular Neuroscience, 2011, 45, 384-389.	2.3	295
83	Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case–control study. Lancet Neurology, The, 2011, 10, 898-908.	10.2	294
84	DCTN1 mutations in Perry syndrome. Nature Genetics, 2009, 41, 163-165.	21.4	285
85	Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathologica, 2014, 128, 505-524.	7.7	284
86	Alzheimer Disease With Amygdala Lewy Bodies. Journal of Neuropathology and Experimental Neurology, 2006, 65, 685-697.	1.7	279
87	Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer's disease. Nature Genetics, 2009, 41, 192-198.	21.4	279
88	Staging TDP-43 pathology in Alzheimer's disease. Acta Neuropathologica, 2014, 127, 441-450.	7.7	278
89	Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain, 2009, 132, 2932-2946.	7.6	277
90	Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathologica, 2011, 122, 673-690.	7.7	277

#	Article	IF	CITATIONS
91	Clinical Correlations With Lewy Body Pathology in <i>LRRK2 </i> Related Parkinson Disease. JAMA Neurology, 2015, 72, 100.	9.0	272
92	When DLB, PD, and PSP masquerade as MSA. Neurology, 2015, 85, 404-412.	1.1	272
93	Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Human Molecular Genetics, 2008, 17, 3631-3642.	2.9	271
94	Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nature Reviews Neurology, 2011, 7, 263-272.	10.1	270
95	Clinicopathologic and ¹¹ C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum. Brain, 2015, 138, 1370-1381.	7.6	270
96	C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nature Neuroscience, 2016, 19, 668-677.	14.8	268
97	Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathologica, 2013, 126, 895-905.	7.7	263
98	Accelerated Lipofuscinosis and Ubiquitination in Granulin Knockout Mice Suggest a Role for Progranulin in Successful Aging. American Journal of Pathology, 2010, 177, 311-324.	3.8	262
99	Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles from Large Volumes of Fluid. Cells, 2018, 7, 273.	4.1	262
100	Lrrk2 and Lewy body disease. Annals of Neurology, 2006, 59, 388-393.	5. 3	259
101	The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Human Molecular Genetics, 2013, 22, 4706-4719.	2.9	251
102	A novel human disease with abnormal prion protein sensitive to protease. Annals of Neurology, 2008, 63, 697-708.	5.3	250
103	Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease. American Journal of Human Genetics, 2011, 89, 398-406.	6.2	250
104	Progressive Supranuclear Palsy: Pathology and Genetics. Brain Pathology, 2007, 17, 74-82.	4.1	249
105	C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD. Neuron, 2015, 88, 892-901.	8.1	249
106	A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity. NeuroImage: Clinical, 2016, 11, 802-812.	2.7	249
107	Neuropathologic Overlap of Progressive Supranuclear Palsy, Pick $\hat{E}^{1}\!\!/\!\!4$ s Disease and Corticobasal Degeneration. Journal of Neuropathology and Experimental Neurology, 1996, 55, 53-67.	1.7	248
108	AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies. Acta Neuropathologica, 2011, 121, 337-349.	7.7	247

#	Article	IF	Citations
109	Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 2020, 11, 667.	12.8	246
110	Updated TDP-43 in Alzheimer's disease staging scheme. Acta Neuropathologica, 2016, 131, 571-585.	7.7	244
111	Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nature Medicine, 2018, 24, 1136-1142.	30.7	241
112	Ribosomal Protein s15 Phosphorylation Mediates LRRK2 Neurodegeneration in Parkinson's Disease. Cell, 2014, 157, 472-485.	28.9	239
113	Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathologica, 2015, 130, 877-889.	7.7	235
114	Deletion of the Ubiquitin Ligase CHIP Leads to the Accumulation, But Not the Aggregation, of Both Endogenous Phospho- and Caspase-3-Cleaved Tau Species. Journal of Neuroscience, 2006, 26, 6985-6996.	3.6	234
115	Argyrophilic Grain Disease Is a Sporadic 4-Repeat Tauopathy. Journal of Neuropathology and Experimental Neurology, 2002, 61, 547-556.	1.7	232
116	Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurology, The, 2013, 12, 978-988.	10.2	232
117	Neuropathology of non-motor features of Parkinson disease. Parkinsonism and Related Disorders, 2009, 15, S1-S5.	2.2	228
118	Brain Expression Genome-Wide Association Study (eGWAS) Identifies Human Disease-Associated Variants. PLoS Genetics, 2012, 8, e1002707.	3.5	225
119	FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathologica, 2010, 120, 33-41.	7.7	222
120	Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiology of Aging, 2008, 29, 280-289.	3.1	221
121	Actin-binding Proteins Coronin-1a and IBA-1 are Effective Microglial Markers for Immunohistochemistry. Journal of Histochemistry and Cytochemistry, 2007, 55, 687-700.	2.5	214
122	An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9673-9678.	7.1	206
123	Pathology of cryptococcal meningoencephalitis: Analysis of 27 patients with pathogenetic implications. Human Pathology, 1996, 27, 839-847.	2.0	201
124	Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Human Molecular Genetics, 2012, 21, 3500-3512.	2.9	198
125	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
126	GMâ€CSF promotes proliferation of human fetal and adult microglia in primary cultures. Glia, 1994, 12, 309-318.	4.9	197

#	Article	IF	Citations
127	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	10.2	195
128	Progranulin in frontotemporal lobar degeneration and neuroinflammation. Journal of Neuroinflammation, 2007, 4, 7.	7.2	194
129	TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A. Nature, 2022, 603, 124-130.	27.8	193
130	Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology, 2013, 81, 2032-2038.	1.1	191
131	Replication of CLU, CR1, and PICALM Associations With Alzheimer Disease. Archives of Neurology, 2010, 67, 961-4.	4.5	188
132	βâ€amyloid burden is not associated with rates of brain atrophy. Annals of Neurology, 2008, 63, 204-212.	5.3	187
133	Association of <i>GBA</i> Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurology, 2016, 73, 1217.	9.0	185
134	Caught in the Act. Neuron, 2003, 40, 453-456.	8.1	184
135	Neuropathologic Features of Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions With Progranulin Gene (PGRN) Mutations. Journal of Neuropathology and Experimental Neurology, 2007, 66, 142-151.	1.7	184
136	Antemortem diagnosis of frontotemporal lobar degeneration. Annals of Neurology, 2005, 57, 480-488.	5.3	181
137	Heterochromatin anomalies and double-stranded RNA accumulation underlie <i>C9orf72</i> poly(PR) toxicity. Science, 2019, 363, .	12.6	181
138	Poly(GP) proteins are a useful pharmacodynamic marker for <i>C9ORF72</i> -associated amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	179
139	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	2.9	178
140	Multiple System Atrophy: A Sporadic Synucleinopathy. Brain Pathology, 1999, 9, 721-732.	4.1	176
141	Microglial Activation parallels System Degeneration in progressive Supranuclear palsy and Corticobasal Degeneration. Journal of Neuropathology and Experimental Neurology, 2001, 60, 647-657.	1.7	176
142	Neurofilament inclusion body disease: a new proteinopathy?. Brain, 2003, 126, 2291-2303.	7.6	176
143	Regional synaptic pathology in Alzheimer's disease. Neurobiology of Aging, 1992, 13, 375-382.	3.1	175
144	CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nature Communications, 2016, 7, 11253.	12.8	174

#	Article	IF	CITATIONS
145	Neuropsychological Differentiation of Dementia with Lewy Bodies from Normal Aging and Alzheimer's Disease. Clinical Neuropsychologist, 2006, 20, 623-636.	2.3	170
146	Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nature Communications, 2015, 6, 7247.	12.8	170
147	Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathologica, 2013, 126, 537-544.	7.7	168
148	Cardiac sympathetic denervation correlates with clinical and pathologic stages of Parkinson's disease. Movement Disorders, 2008, 23, 1085-1092.	3.9	167
149	Pathological markers associated with normal aging and dementia in the elderly. Annals of Neurology, 1993, 34, 566-573.	5. 3	166
150	Incidental Lewy Body Disease and Preclinical Parkinson Disease. Archives of Neurology, 2008, 65, 1074-80.	4.5	166
151	Prominent phenotypic variability associated with mutations in Progranulin. Neurobiology of Aging, 2009, 30, 739-751.	3.1	166
152	Nuclear translocation of AMPK-α1 potentiates striatal neurodegeneration in Huntington's disease. Journal of Cell Biology, 2011, 194, 209-227.	5.2	166
153	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
154	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.8	166
155	LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Molecular Neurodegeneration, 2012, 7, 25.	10.8	165
156	Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nature Medicine, 2014, 20, 1444-1451.	30.7	165
157	Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect?. Journal of Clinical Investigation, 2004, 114, 23-27.	8.2	163
158	Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiology of Aging, 2012, 33, 2091-2105.	3.1	162
159	Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer's disease: a longitudinal retrospective study. Lancet Neurology, The, 2017, 16, 917-924.	10.2	159
160	White-matter integrity on DTI and the pathologic staging of Alzheimer's disease. Neurobiology of Aging, 2017, 56, 172-179.	3.1	158
161	Evaluation of $\hat{l}\pm$ -synuclein immunohistochemical methods used by invited experts. Acta Neuropathologica, 2008, 116, 277-288.	7.7	157
162	Clinicopathologic assessment and imaging of tauopathies in neurodegenerative dementias. Alzheimer's Research and Therapy, 2014, 6, 1.	6.2	156

#	Article	IF	Citations
163	Diagnostic accuracy of progressive supranuclear palsy in the Society for Progressive Supranuclear Palsy Brain Bank. Movement Disorders, 2003, 18, 1018-1026.	3.9	155
164	α-Synuclein and the Lewy body disorders. Current Opinion in Neurology, 2001, 14, 423-432.	3.6	153
165	MRI characteristics and scoring in HDLS due to <i>CSF1R</i> gene mutations. Neurology, 2012, 79, 566-574.	1.1	153
166	Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain, 2017, 140, aww339.	7.6	153
167	Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. NeuroImage, 2008, 42, 559-567.	4.2	152
168	<pre><mml:math id="E1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}^2</mml:mi></mml:math></pre> /mml:mi>/mml:math>-Amyloid Degradation and Alzheimer's Disease. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-12.	3.0	151
169	Alzheimer Disease: Postmortem Neuropathologic Correlates of Antemortem ¹ H MR Spectroscopy Metabolite Measurements ¹ . Radiology, 2008, 248, 210-220.	7.3	147
170	Ataxin-2 repeat-length variation and neurodegeneration. Human Molecular Genetics, 2011, 20, 3207-3212.	2.9	147
171	(Pathoâ€)physiological relevance of <scp>PINK</scp> 1â€dependent ubiquitin phosphorylation. EMBO Reports, 2015, 16, 1114-1130.	4.5	147
172	Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathologica, 2016, 131, 27-48.	7.7	147
173	Rates of cerebral atrophy differ in different degenerative pathologies. Brain, 2006, 130, 1148-1158.	7.6	146
174	Progranulin Mutations in Primary Progressive Aphasia. Archives of Neurology, 2007, 64, 43.	4.5	146
175	Functional Impact of White Matter Hyperintensities in Cognitively Normal Elderly Subjects. Archives of Neurology, 2010, 67, 1379-85.	4.5	146
176	Pick's Disease: A Modern Approach. Brain Pathology, 1998, 8, 339-354.	4.1	145
177	Expression and functional profiling of neprilysin, insulinâ€degrading enzyme, and endothelinâ€converting enzyme in prospectively studied elderly and Alzheimer's brain. Journal of Neurochemistry, 2010, 115, 47-57.	3.9	144
178	Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.	1.1	144
179	Dementia with Lewy bodies. Neurology, 2014, 83, 801-809.	1.1	143
180	PART, a distinct tauopathy, different from classical sporadic Alzheimer disease. Acta Neuropathologica, 2015, 129, 757-762.	7.7	139

#	Article	IF	Citations
181	Validation of the Neuropathologic Criteria of the Third Consortium for Dementia With Lewy Bodies for Prospectively Diagnosed Cases. Journal of Neuropathology and Experimental Neurology, 2008, 67, 649-656.	1.7	137
182	Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice. Molecular Neurodegeneration, 2011, 6, 73.	10.8	137
183	Incidental Lewy body disease: Do some cases represent a preclinical stage of dementia with Lewy bodies?. Neurobiology of Aging, 2011, 32, 857-863.	3.1	136
184	<i>CSF1R</i> mutations link POLD and HDLS as a single disease entity. Neurology, 2013, 80, 1033-1040.	1.1	136
185	Risk factors for dementia with Lewy bodies. Neurology, 2013, 81, 833-840.	1.1	136
186	Dementia with Lewy bodies and Parkinson's disease with dementia: Are they different?. Parkinsonism and Related Disorders, 2005, 11, S47-S51.	2.2	135
187	TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathologica, 2014, 127, 397-406.	7.7	133
188	Oxidized neprilysin in aging and Alzheimer's disease brains. Biochemical and Biophysical Research Communications, 2003, 310, 236-241.	2.1	132
189	TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathologica, 2007, 114, 71-79.	7.7	131
190	Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. FASEB Journal, 2009, 23, 2595-2604.	0.5	130
191	Atypical Progressive Supranuclear Palsy With Corticospinal Tract Degeneration. Journal of Neuropathology and Experimental Neurology, 2006, 65, 396-405.	1.7	129
192	FUS is Phosphorylated by DNA-PK and Accumulates in the Cytoplasm after DNA Damage. Journal of Neuroscience, 2014, 34, 7802-7813.	3.6	129
193	Leucine-Rich Repeat Kinase 2 Gene-Associated Disease: Redefining Genotype-Phenotype Correlation. Neurodegenerative Diseases, 2010, 7, 175-179.	1.4	127
194	<i>CSF1R</i> -related leukoencephalopathy. Neurology, 2018, 91, 1092-1104.	1.1	126
195	Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration. Mechanisms of Ageing and Development, 2009, 130, 619-636.	4.6	125
196	Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathologica, 2017, 133, 705-715.	7.7	125
197	Dementia with Lewy bodies may present as dementia and REM sleep behavior disorder without parkinsonism or hallucinations. Journal of the International Neuropsychological Society, 2002, 8, 907-914.	1.8	124
198	Temporal lobar predominance of TDP-43 neuronal cytoplasmic inclusions in Alzheimer disease. Acta Neuropathologica, 2008, 116, 215-220.	7.7	124

#	Article	IF	CITATIONS
199	Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Human Molecular Genetics, 2013, 22, 2067-2082.	2.9	124
200	Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility. Journal of Neurochemistry, 2002, 83, 1498-1508.	3.9	122
201	<i>APOE</i> $\hat{l}\mu$ 4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology, 2018, 91, e1182-e1195.	1.1	122
202	Selective loss of cortical endothelial tight junction proteins during Alzheimer's disease progression. Brain, 2019, 142, 1077-1092.	7.6	120
203	Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathologica, 2008, 116, 205-213.	7.7	119
204	Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain, 2011, 134, 3264-3275.	7.6	119
205	Parkinsonian features in hereditary diffuse leukoencephalopathy with spheroids (HDLS) and CSF1R mutations. Parkinsonism and Related Disorders, 2013, 19, 869-877.	2.2	119
206	Differential clinicopathologic and genetic features of late-onset amnestic dementias. Acta Neuropathologica, 2014, 128, 411-421.	7.7	119
207	TDP-43 in aging and Alzheimer's disease - a review. International Journal of Clinical and Experimental Pathology, 2011, 4, 147-55.	0.5	118
208	Early Alzheimer's Disease Neuropathology Detected by Proton MR Spectroscopy. Journal of Neuroscience, 2014, 34, 16247-16255.	3.6	117
209	Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. Journal of Clinical Investigation, 2020, 130, 6080-6092.	8.2	117
210	Extensive FUSâ€Immunoreactive Pathology in Juvenile Amyotrophic Lateral Sclerosis with Basophilic Inclusions. Brain Pathology, 2010, 20, 1069-1076.	4.1	116
211	Spt4 selectively regulates the expression of <i>C9orf72</i> sense and antisense mutant transcripts. Science, 2016, 353, 708-712.	12.6	116
212	[18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathologica, 2016, 132, 931-933.	7.7	116
213	Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases. Alzheimer's and Dementia, 2018, 14, 352-366.	0.8	116
214	Ultrastructural neuronal pathology in transgenic mice expressing mutant (P301L) human tau. Journal of Neurocytology, 2003, 32, 1091-1105.	1.5	115
215	<i>C9orf72</i> poly(GR) aggregation induces TDP-43 proteinopathy. Science Translational Medicine, 2020, 12, .	12.4	115
216	Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta Neuropathologica, 2009, 118, 349-358.	7.7	114

#	Article	IF	Citations
217	Cockayne Syndrome in Adults: Review With Clinical and Pathologic Study of a New Case. Journal of Child Neurology, 2006, 21, 991-1006.	1.4	113
218	Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiology of Aging, 2015, 36, 452-461.	3.1	113
219	Tauâ€positron emission tomography correlates with neuropathology findings. Alzheimer's and Dementia, 2020, 16, 561-571.	0.8	113
220	Evidence in favor of Braak staging of Parkinson's disease. Movement Disorders, 2010, 25, S78-82.	3.9	112
221	Elucidating the genetics and pathology of Perry syndrome. Journal of the Neurological Sciences, 2010, 289, 149-154.	0.6	112
222	Association of Crossword Puzzle Participation with Memory Decline in Persons Who Develop Dementia. Journal of the International Neuropsychological Society, 2011, 17, 1006-1013.	1.8	112
223	Increased tau burden in the cortices of progressive supranuclear palsy presenting with corticobasal syndrome. Movement Disorders, 2005, 20, 982-988.	3.9	111
224	Mutations in <i>LRRK2</i> ii>increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Human Mutation, 2011, 32, 1390-1397.	2.5	111
225	Long-read sequencing across the C9orf72  GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Molecular Neurodegeneration, 2018, 13, 46.	10.8	111
226	Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Molecular Neurodegeneration, 2019, 14, 9.	10.8	111
227	The Second NINDS/NIBIB Consensus Meeting to Define Neuropathological Criteria for the Diagnosis of Chronic Traumatic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 210-219.	1.7	111
228	Alzheimer's Disease–Related Dementias Summit 2016: National research priorities. Neurology, 2017, 89, 2381-2391.	1.1	109
229	Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration. Archives of Neurology, 2011, 68, 488.	4.5	108
230	Differential Incorporation of Tau Isoforms in Alzheimer's Disease. Journal of Alzheimer's Disease, 2008, 14, 1-16.	2.6	107
231	Association of MAPT haplotypes with Alzheimer's disease risk and MAPT brain gene expression levels. Alzheimer's Research and Therapy, 2014, 6, 39.	6.2	106
232	Frontotemporal dementia and parkinsonism associated with the IVS1+1G-> A mutation in progranulin: a clinicopathologic study. Brain, 2006, 129, 3103-3114.	7.6	105
233	Neuropathology of Parkinson's disease dementia and dementia with Lewy bodies with reference to striatal pathology. Parkinsonism and Related Disorders, 2007, 13, S221-S224.	2.2	105
234	Temporoparietal atrophy: A marker of AD pathology independent of clinical diagnosis. Neurobiology of Aging, 2011, 32, 1531-1541.	3.1	105

#	Article	IF	Citations
235	The Etiopathogenesis of Parkinson Disease and Suggestions for Future Research. Part I. Journal of Neuropathology and Experimental Neurology, 2007, 66, 251-257.	1.7	104
236	Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathologica, 2015, 130, 863-876.	7.7	104
237	Neuropathologically defined subtypes of Alzheimer's disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathologica, 2012, 124, 681-692.	7.7	103
238	Recommendations of the Alzheimer's Disease–Related Dementias Conference. Neurology, 2014, 83, 851-860.	1.1	103
239	Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer's disease brain, induces tau phosphorylation in neurons. Brain, 2006, 129, 3020-3034.	7.6	101
240	Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Human Molecular Genetics, 2017, 26, 3421-3431.	2.9	101
241	Neuropathology and molecular diagnosis of Synucleinopathies. Molecular Neurodegeneration, 2021, 16, 83.	10.8	101
242	Expanded-Polyglutamine Huntingtin Protein Suppresses the Secretion and Production of a Chemokine (CCL5/RANTES) by Astrocytes. Journal of Neuroscience, 2008, 28, 3277-3290.	3.6	100
243	Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease. Brain, 2014, 137, 1533-1549.	7.6	100
244	An acetylation–phosphorylation switch that regulates tau aggregation propensity and function. Journal of Biological Chemistry, 2017, 292, 15277-15286.	3.4	100
245	APOE $\hat{l}\mu 2$ is associated with increased tau pathology in primary tauopathy. Nature Communications, 2018, 9, 4388.	12.8	100
246	Rapid eye movement sleep behavior disorder and subtypes in autopsy onfirmed dementia with Lewy bodies. Movement Disorders, 2012, 27, 72-78.	3.9	99
247	Sensitivity and Specificity of Diagnostic Criteria for Progressive Supranuclear Palsy. Movement Disorders, 2019, 34, 1144-1153.	3.9	98
248	Neuropathology of Alzheimer's disease and other dementias. Clinics in Geriatric Medicine, 2001, 17, 209-228.	2.6	97
249	Iron and reactive oxygen species activity in parkinsonian substantia nigra. Parkinsonism and Related Disorders, 2010, 16, 329-333.	2.2	97
250	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
251	TAR DNAâ€binding protein 43 and pathological subtype of Alzheimer's disease impact clinical features. Annals of Neurology, 2015, 78, 697-709.	5.3	96
252	Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6962-E6971.	7.1	96

#	Article	IF	Citations
253	APOE4-mediated amyloid- \hat{l}^2 pathology depends on its neuronal receptor LRP1. Journal of Clinical Investigation, 2019, 129, 1272-1277.	8.2	96
254	Filamentous Tau in Oligodendrocytes and Astrocytes of Transgenic Mice Expressing the Human Tau Isoform with the P301L Mutation. American Journal of Pathology, 2003, 162, 213-218.	3.8	95
255	Profile of cognitive impairment and underlying pathology in multiple system atrophy. Movement Disorders, 2017, 32, 405-413.	3.9	95
256	Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain, 2008, 131, 460-472.	7.6	94
257	Contribution of vascular pathology to the clinical expression of dementia. Neurobiology of Aging, 2010, 31, 1710-1720.	3.1	94
258	Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 175-184.	1.9	94
259	Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 862-871.	0.8	93
260	Neuropathologic, Biochemical, and Molecular Characterization of the Frontotemporal Dementias. Journal of Neuropathology and Experimental Neurology, 2005, 64, 420-428.	1.7	92
261	Overlapping profiles of Abeta peptides in the Alzheimer's disease and pathological aging brains. Alzheimer's Research and Therapy, 2012, 4, 18.	6.2	92
262	TDP-43 Pathology in Alzheimer's Disease. Molecular Neurodegeneration, 2021, 16, 84.	10.8	92
263	Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies. Neurology, 2012, 79, 553-560.	1.1	91
264	Tau accumulation in astrocytes in progressive supranuclear palsy is a degenerative rather than a reactive process. Acta Neuropathologica, 2002, 104, 398-402.	7.7	90
265	Antemortem differential diagnosis of dementia pathology using structural MRI: Differential-STAND. Neurolmage, 2011, 55, 522-531.	4.2	90
266	Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathologica, 2017, 133, 825-837.	7.7	90
267	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
268	APOE4 exacerbates \hat{l}_{\pm} -synuclein pathology and related toxicity independent of amyloid. Science Translational Medicine, 2020, 12, .	12.4	90
269	Pallidonigral TDP-43 pathology in Perry syndrome. Parkinsonism and Related Disorders, 2009, 15, 281-286.	2.2	89
270	Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathologica, 2015, 130, 559-573.	7.7	89

#	Article	IF	CITATIONS
271	Parkinson's disease: experimental models and reality. Acta Neuropathologica, 2018, 135, 13-32.	7.7	89
272	4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathologica, 2020, 139, 63-77.	7.7	89
273	Argyrophilic Grain Disease: Neuropathology, Frequency in a Dementia Brain Bank and Lack of Relationship with Apolipoprotein E. Brain Pathology, 2002, 12, 45-52.	4.1	88
274	Co-Localization of Glycogen Synthase Kinase-3 with Neurofibrillary Tangles and Granulovacuolar Degeneration in Transgenic Mice. American Journal of Pathology, 2003, 163, 1057-1067.	3.8	87
275	Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration. Acta Neuropathologica, 2007, 113, 245-252.	7.7	87
276	Tau pathology in frontotemporal lobar degeneration with C9ORF72 hexanucleotide repeat expansion. Acta Neuropathologica, 2013, 125, 289-302.	7.7	87
277	<scp>TMEM</scp> 106B p.T185S regulates <scp>TMEM</scp> 106B protein levels: implications for frontotemporal dementia. Journal of Neurochemistry, 2013, 126, 781-791.	3.9	87
278	Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy, 2018, 14, 1404-1418.	9.1	87
279	A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathologica, 2019, 138, 237-250.	7.7	87
280	Singleâ€dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. FASEB Journal, 2007, 21, 2520-2527.	0.5	85
281	LRRK2 phosphorylates novel tau epitopes and promotes tauopathy. Acta Neuropathologica, 2013, 126, 809-827.	7.7	85
282	Cellular and pathological heterogeneity of primary tauopathies. Molecular Neurodegeneration, 2021, 16, 57.	10.8	85
283	Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature, 2022, 605, 304-309.	27.8	85
284	Hereditary diffuse leukoencephalopathy with spheroids: clinical, pathologic and genetic studies of a new kindred. Acta Neuropathologica, 2006, 111, 300-311.	7.7	84
285	<i>C9ORF72</i> repeat expansions in cases with previously identified pathogenic mutations. Neurology, 2013, 81, 1332-1341.	1.1	84
286	Immunohistochemical Localization of an Hiv Epitope in Cerebral Aneurysmal Arteriopathy in Pediatric Acquired Immunodeficiency Syndrome (AIDS). Pediatric Pathology, 1989, 9, 655-667.	0.5	83
287	Frontal Lobe Dementia With Novel Tauopathy: Sporadic Multiple System Tauopathy With Dementia. Journal of Neuropathology and Experimental Neurology, 2001, 60, 328-341.	1.7	83
288	The neuropathology and biochemistry of frontotemporal dementia. Annals of Neurology, 2003, 54, S24-S28.	5.3	83

#	Article	IF	CITATIONS
289	Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype. Neurobiology of Aging, 2012, 33, 2950.e5-2950.e7.	3.1	83
290	Voxel-Based Morphometry in Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions With and Without Progranulin Mutations. Archives of Neurology, 2007, 64, 371.	4. 5	82
291	Three Repeat Isoforms of Tau Inhibit Assembly of Four Repeat Tau Filaments. PLoS ONE, 2010, 5, e10810.	2.5	82
292	Common Variant in <i>GRN</i> Is a Genetic Risk Factor for Hippocampal Sclerosis in the Elderly. Neurodegenerative Diseases, 2010, 7, 170-174.	1.4	82
293	Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21510-21515.	7.1	82
294	Adenosine monophosphate-activated protein kinase overactivation leads to accumulation of α-synuclein oligomers and decrease of neurites. Neurobiology of Aging, 2013, 34, 1504-1515.	3.1	82
295	Neurodegenerative diseases with cytoskeletal pathology: A biochemical classification. Annals of Neurology, 1997, 42, 541-544.	5. 3	81
296	<i>TMEM106B</i> risk variant is implicated in the pathologic presentation of Alzheimer disease. Neurology, 2012, 79, 717-718.	1.1	81
297	Characteristics of TBS-Extractable Hyperphosphorylated Tau Species: Aggregation Intermediates in rTg4510 Mouse Brain. Journal of Alzheimer's Disease, 2012, 33, 249-263.	2.6	81
298	The lysosomal protein cathepsin L is a progranulin protease. Molecular Neurodegeneration, 2017, 12, 55.	10.8	81
299	Glycation and microglial reaction in lesions of Alzheimer's disease. Neurobiology of Aging, 1996, 17, 733-743.	3.1	79
300	Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. FASEB Journal, 2005, 19, 1549-1551.	0.5	79
301	Poly-GR dipeptide repeat polymers correlate with neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain disease. Acta Neuropathologica Communications, 2018, 6, 63.	5. 2	79
302	Pin1 colocalization with phosphorylated tau in Alzheimer's disease and other tauopathies. Neurobiology of Disease, 2003, 14, 251-264.	4.4	78
303	Neuropathology of primary restless leg syndrome: Absence of specific Ï,- and α-synuclein pathology. Movement Disorders, 2004, 19, 695-699.	3.9	78
304	Hippocampal Sclerosis in the Elderly. Alzheimer Disease and Associated Disorders, 2011, 25, 364-368.	1.3	78
305	A Quantitative Postmortem MRI Design Sensitive to White Matter Hyperintensity Differences and Their Relationship With Underlying Pathology. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1113-1122.	1.7	78
306	Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with RACK1 on polyribosomes. Human Molecular Genetics, 2017, 26, 1407-1418.	2.9	78

#	Article	IF	CITATIONS
307	Mimicking Aspects of Frontotemporal Lobar Degeneration and Lou Gehrig's Disease in Rats via TDP-43 Overexpression. Molecular Therapy, 2009, 17, 607-613.	8.2	76
308	Frontotemporal dementia with the V337M <i>MAPT</i> mutation. Neurology, 2017, 88, 758-766.	1.1	76
309	In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers. Acta Neuropathologica, 2017, 134, 255-269.	7.7	76
310	Tau and Synuclein and Their Role in Neuropathology. Brain Pathology, 1999, 9, 657-661.	4.1	75
311	Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications. Molecular Neurodegeneration, 2012, 7, 13.	10.8	75
312	Polysomnographic Findings in Dementia With Lewy Bodies. Neurologist, 2013, 19, 1-6.	0.7	75
313	Neuropathologic differences by race from the National Alzheimer's Coordinating Center. Alzheimer's and Dementia, 2016, 12, 669-677.	0.8	75
314	ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans. Molecular Neurodegeneration, 2018, 13, 53.	10.8	75
315	Normal cognition in transgenic BRI2-A \hat{l}^2 mice. Molecular Neurodegeneration, 2013, 8, 15.	10.8	74
316	Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiology of Aging, 2014, 35, 2421.e13-2421.e17.	3.1	74
317	Mitochondrial ATP synthase activity is impaired by suppressed <i>O </i> -GlcNAcylation in Alzheimer's disease. Human Molecular Genetics, 2015, 24, 6492-6504.	2.9	74
318	Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy. Annals of Neurology, 2001, 50, 494-502.	5.3	73
319	Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS): A misdiagnosed disease entity. Journal of the Neurological Sciences, 2012, 314, 130-137.	0.6	7 3
320	Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathologica, 2016, 132, 225-234.	7.7	73
321	Impaired endo-lysosomal membrane integrity accelerates the seeding progression of \hat{l}_{\pm} -synuclein aggregates. Scientific Reports, 2017, 7, 7690.	3.3	73
322	Clinical correlates of the pathology underlying parkinsonism: A population perspective. Movement Disorders, 2002, 17, 910-916.	3.9	72
323	Decreased Neprilysin Immunoreactivity in Alzheimer Disease, but Not in Pathological Aging. Journal of Neuropathology and Experimental Neurology, 2005, 64, 378-385.	1.7	72
324	Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to rapid eye movement (REM) sleep behaviour disorder. Neuropathology and Applied Neurobiology, 2012, 38, 142-152.	3.2	72

#	Article	IF	CITATIONS
325	Required techniques and useful molecular markers in the neuropathologic diagnosis of neurodegenerative diseases. Acta Neuropathologica, 2005, 109, 14-24.	7.7	71
326	Anatomical differences between CBSâ€corticobasal degeneration and CBSâ€Alzheimer's disease. Movement Disorders, 2010, 25, 1246-1252.	3.9	71
327	Inducible nitric oxide synthase expression is selectively induced in astrocytes isolated from adult human brain. Brain Research, 1998, 813, 402-405.	2.2	70
328	Co-localization of tau and α-synuclein in the olfactory bulb in Alzheimer's disease with amygdala Lewy bodies. Acta Neuropathologica, 2008, 116, 17-24.	7.7	70
329	Argyrophilic grains: A distinct disease or an additive pathology?. Neurobiology of Aging, 2008, 29, 566-573.	3.1	70
330	Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Research, 2014, 1584, 15-21.	2.2	70
331	TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. Human Molecular Genetics, 2016, 25, 534-545.	2.9	70
332	Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell, 2022, 185, 1346-1355.e15.	28.9	70
333	TYROBP genetic variants in early-onset Alzheimer's disease. Neurobiology of Aging, 2016, 48, 222.e9-222.e15.	3.1	69
334	The limbic and neocortical contribution of $\hat{l}\pm \hat{a}\in s$ ynuclein, tau, and amyloid \hat{l}^2 to disease duration in dementia with Lewy bodies. Alzheimer's and Dementia, 2018, 14, 330-339.	0.8	69
335	Sex and age interact to determine clinicopathologic differences in Alzheimer's disease. Acta Neuropathologica, 2018, 136, 873-885.	7.7	69
336	Identification of a Novel Risk Locus for Progressive Supranuclear Palsy by a Pooled Genomewide Scan of 500,288 Single-Nucleotide Polymorphisms. American Journal of Human Genetics, 2007, 80, 769-778.	6.2	68
337	Prosaposin is a regulator of progranulin levels and oligomerization. Nature Communications, 2016, 7, 11992.	12.8	68
338	Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Science Translational Medicine, 2021, 13, .	12.4	68
339	Neuropathology of non-Alzheimer degenerative disorders. International Journal of Clinical and Experimental Pathology, 2009, 3, 1-23.	0.5	68
340	Correlation Between Antemortem Magnetic Resonance Imaging Findings and Pathologically Confirmed Corticobasal Degeneration. Archives of Neurology, 2004, 61, 1881-4.	4.5	67
341	Replication of EPHA1 and CD33 associations with late-onset Alzheimer's disease: a multi-centre case-control study. Molecular Neurodegeneration, 2011, 6, 54.	10.8	67
342	Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A. Acta Neuropathologica, 2015, 129, 53-64.	7.7	67

#	Article	IF	Citations
343	Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience. Genome Medicine, 2017, 9, 100.	8.2	67
344	FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain, 2018, 141, 1201-1217.	7.6	67
345	Frequency of LATE neuropathologic change across the spectrum of Alzheimer's disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathologica, 2022, 144, 27-44.	7.7	67
346	Clinically Undetected Motor Neuron Disease in Pathologically Proven Frontotemporal Lobar Degeneration With Motor Neuron Disease. Archives of Neurology, 2006, 63, 506.	4. 5	66
347	Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathologica, 2014, 127, 271-282.	7.7	66
348	Association between contact sports participation and chronic traumatic encephalopathy: a retrospective cohort study. Brain Pathology, 2020, 30, 63-74.	4.1	66
349	Atypical multiple system atrophy is a new subtype of frontotemporal lobar degeneration: frontotemporal lobar degeneration associated with \hat{l}_{\pm} -synuclein. Acta Neuropathologica, 2015, 130, 93-105.	7.7	65
350	Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathologica, 2019, 137, 227-238.	7.7	65
351	Î ² -Amyloid PET and neuropathology in dementia with Lewy bodies. Neurology, 2020, 94, e282-e291.	1.1	65
352	A Clinicopathological Study of Vascular Progressive Supranuclear Palsy. Archives of Neurology, 2002, 59, 1597.	4.5	64
353	Ballooned neurons in progressive supranuclear palsy are usually due to concurrent argyrophilic grain disease. Acta Neuropathologica, 2002, 104, 53-56.	7.7	64
354	Apolipoprotein E $\hat{l}\mu4$ Is a Determinant for Alzheimer-Type Pathologic Features in Tauopathies, Synucleinopathies, and Frontotemporal Degeneration. Archives of Neurology, 2004, 61, 1579.	4.5	64
355	Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism and Related Disorders, 2011, 17, 683-688.	2.2	64
356	Late-onset Alzheimer disease risk variants mark brain regulatory loci. Neurology: Genetics, 2015, 1, e15.	1.9	64
357	Association of \hat{l}_{\pm} , \hat{l}^2 , and \hat{l}^3 -Synuclein With Diffuse Lewy Body Disease. Archives of Neurology, 2010, 67, 970-5.	4.5	63
358	Novel A18T and pA29S substitutions in $\hat{l}\pm$ -synuclein may be associated with sporadic Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 1057-1060.	2.2	63
359	Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene. Molecular Neurodegeneration, 2014, 9, 38.	10.8	63
360	DCTN1-related neurodegeneration: Perry syndrome and beyond. Parkinsonism and Related Disorders, 2017, 41, 14-24.	2.2	62

#	Article	IF	CITATIONS
361	Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurology, The, 2021, 20, 107-116.	10.2	62
362	Selective Neurofibrillary Degeneration of the Hippocampal CA2 Sector Is Associated with Four-Repeat Tauopathies. Journal of Neuropathology and Experimental Neurology, 2002, 61, 1040-1047.	1.7	61
363	Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline. Neuroscience Research, 2004, 48, 93-100.	1.9	61
364	Imaging Signatures of Molecular Pathology in Behavioral Variant Frontotemporal Dementia. Journal of Molecular Neuroscience, 2011, 45, 372-8.	2.3	61
365	Replication of BIN1 Association with Alzheimer's Disease and Evaluation of Genetic Interactions. Journal of Alzheimer's Disease, 2011, 24, 751-758.	2.6	61
366	Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Molecular Neurodegeneration, 2012, 7, 53.	10.8	61
367	Genome-wide association interaction analysis for Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2436-2443.	3.1	61
368	FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. Journal of Neurology, 2014, 261, 710-716.	3.6	60
369	Cerebellar ataxia in progressive supranuclear palsy: An autopsy study of PSPâ€C. Movement Disorders, 2016, 31, 653-662.	3.9	60
370	Association of Apolipoprotein E $\hat{l}\mu4$ With Transactive Response DNA-Binding Protein 43. JAMA Neurology, 2018, 75, 1347.	9.0	60
371	Alzheimer Disease–like Phenotype Associated With the c.154delA Mutation in Progranulin. Archives of Neurology, 2010, 67, 171-7.	4.5	59
372	Corticobasal degeneration with TDP-43 pathology presenting with progressive supranuclear palsy syndrome: a distinct clinicopathologic subtype. Acta Neuropathologica, 2018, 136, 389-404.	7.7	59
373	Neuroaxonal dystrophy in HTLV-1-associated myelopathy/tropical spastic paraparesis: neuropathologic and neuroimmunologic correlations. Acta Neuropathologica, 1993, 86, 224-235.	7.7	58
374	Enhanced binding of advanced glycation endproducts (AGE) by the ApoE4 isoform links the mechanism of plaque deposition in Alzheimer's disease. Neuroscience Letters, 1997, 226, 155-158.	2.1	58
375	Leflunomide-Associated Progressive Multifocal Leukoencephalopathy. Archives of Neurology, 2008, 65, 1538.	4.5	58
376	Interphase Cytogenetics for $1p19q$ and $t(1;19)(q10;p10)$ may Distinguish Prognostically Relevant Subgroups in Extraventricular Neurocytoma. Brain Pathology, 2009, 19, 623-629.	4.1	58
377	MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies. Neurology, 2013, 81, 1681-1689.	1.1	58
378	Age-related decline in white matter integrity in a mouse model of tauopathy: an inÂvivo diffusion tensor magnetic resonance imaging study. Neurobiology of Aging, 2014, 35, 1364-1374.	3.1	58

#	Article	IF	Citations
379	Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells. Molecular Neurodegeneration, 2015, 10, 46.	10.8	58
380	Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Molecular Brain Research, 2001, 97, 94-102.	2.3	57
381	Cotton Wool Plaques in Non-Familial Late-Onset Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 1051-1061.	1.7	57
382	\hat{l}_{\pm} -Synuclein immunoreactivity in neuronal nuclear inclusions and neurites in multiple system atrophy. Neuroscience Letters, 2004, 354, 99-102.	2.1	57
383	Investigation of 15 of the top candidate genes for late-onset Alzheimer's disease. Human Genetics, 2011, 129, 273-282.	3.8	57
384	ApoE variant p.V236E is associated with markedly reduced risk of Alzheimer's disease. Molecular Neurodegeneration, 2014, 9, 11.	10.8	57
385	Dementia with Lewy Bodies: Neuropathology. Journal of Geriatric Psychiatry and Neurology, 2002, 15, 210-216.	2.3	56
386	A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder. Brain, 2007, 130, 2277-2291.	7.6	56
387	Neurodegeneration involving putative respiratory neurons in Perry syndrome. Acta Neuropathologica, 2008, 115, 263-268.	7.7	56
388	Overexpression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration. American Journal of Pathology, 2009, 175, 1598-1609.	3.8	56
389	Symmetric corticobasal degeneration (S-CBD). Parkinsonism and Related Disorders, 2010, 16, 208-214.	2.2	56
390	SLC20A2 and THAP1 deletion in familial basal ganglia calcification with dystonia. Neurogenetics, 2014, 15, 23-30.	1.4	56
391	Lrrk2 G2019S substitution in frontotemporal lobar degeneration with ubiquitin-immunoreactive neuronal inclusions. Acta Neuropathologica, 2007, 113, 601-606.	7.7	55
392	Arguing against the proposed definition changes of PD. Movement Disorders, 2016, 31, 1619-1622.	3.9	55
393	Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer's disease brains. Molecular Neurodegeneration, 2016, 11, 72.	10.8	55
394	Fluorescence and autoradiographic evaluation of tau PET ligand PBB3 to \hat{l}_{\pm} -synuclein pathology. Movement Disorders, 2017, 32, 884-892.	3.9	55
395	AD-linked R47H- <i>TREM2</i> mutation induces disease-enhancing microglial states via AKT hyperactivation. Science Translational Medicine, 2021, 13, eabe3947.	12.4	55
396	Polyglutamine-containing aggregates in neuronal intranuclear inclusion disease. Lancet, The, 1998, 351, 884.	13.7	54

#	Article	IF	CITATIONS
397	Frontal asymmetry in behavioral variant frontotemporal dementia: clinicoimaging and pathogenetic correlates. Neurobiology of Aging, 2013, 34, 636-639.	3.1	54
398	Chronic Traumatic Encephalopathy Pathology in Multiple System Atrophy. Journal of Neuropathology and Experimental Neurology, 2016, 75, 963-970.	1.7	54
399	Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Molecular Neurodegeneration, 2018, 13, 37.	10.8	54
400	PET-detectable tau pathology correlates with long-term neuropsychiatric outcomes in patients with traumatic brain injury. Brain, 2019, 142, 3265-3279.	7.6	54
401	Lewy Bodies in Progressive Supranuclear Palsy Represent an Independent Disease Process. Journal of Neuropathology and Experimental Neurology, 2006, 65, 387-395.	1.7	53
402	Glial cytoplasmic inclusions in neurologically normal elderly: prodromal multiple system atrophy?. Acta Neuropathologica, 2008, 116, 269-275.	7.7	53
403	Disease specificity and pathologic progression of tau pathology in brainstem nuclei of Alzheimer's disease and progressive supranuclear palsy. Neuroscience Letters, 2011, 491, 122-126.	2.1	53
404	Quantitative neurofibrillary tangle density and brain volumetric MRI analyses in Alzheimer's disease presenting as logopenic progressive aphasia. Brain and Language, 2013, 127, 127-134.	1.6	53
405	Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Reports, 2020, 30, 3004-3019.e5.	6.4	53
406	Frontotemporal Lobar Degeneration Without Lobar Atrophy. Archives of Neurology, 2006, 63, 1632.	4.5	52
407	Sex-dependent association of a common low-density lipoprotein receptor polymorphism with RNA splicing efficiency in the brain and Alzheimer's disease. Human Molecular Genetics, 2007, 17, 929-935.	2.9	52
408	Rates of brain atrophy over time in autopsy-proven frontotemporal dementia and Alzheimer disease. Neurolmage, 2008, 39, 1034-1040.	4.2	52
409	Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model. Human Molecular Genetics, 2015, 24, 6198-6212.	2.9	52
410	TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nature Neuroscience, 2022, 25, 26-38.	14.8	52
411	Increased Frequency of Argyrophilic Grain Disease in Alzheimer Disease with 4R Tau-Specific Immunohistochemistry. Journal of Neuropathology and Experimental Neurology, 2005, 64, 209-214.	1.7	51
412	Aging Blunts Ischemic-Preconditioning-Induced Neuroprotection Following Transient Global Ischemia in Rats. Current Neurovascular Research, 2005, 2, 365-374.	1.1	51
413	Brain regional correlation of amyloid- \hat{l}^2 with synapses and apolipoprotein E in non-demented individuals: potential mechanisms underlying regional vulnerability to amyloid- \hat{l}^2 accumulation. Acta Neuropathologica, 2013, 125, 535-547.	7.7	51
414	Late-onset Alzheimer disease genetic variants in posterior cortical atrophy and posterior AD. Neurology, 2014, 82, 1455-1462.	1,1	51

#	Article	IF	CITATIONS
415	Mitochondrial targeting sequence variants of the <i>CHCHD2</i> gene are a risk for Lewy body disorders. Neurology, 2015, 85, 2016-2025.	1.1	51
416	Structure-based inhibitors halt prion-like seeding by Alzheimer's disease–and tauopathy–derived brain tissue samples. Journal of Biological Chemistry, 2019, 294, 16451-16464.	3.4	51
417	The influence of tau, amyloid, alpha-synuclein, TDP-43, and vascular pathology in clinically normal elderly individuals. Neurobiology of Aging, 2019, 77, 26-36.	3.1	51
418	Chimeric Peptide Species Contribute to Divergent Dipeptide Repeat Pathology in c9ALS/FTD and SCA36. Neuron, 2020, 107, 292-305.e6.	8.1	51
419	A Qualitative and Quantitative Study of Grumose Degeneration in Progressive Supranuclear Palsy. Journal of Neuropathology and Experimental Neurology, 2000, 59, 513-524.	1.7	50
420	Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta Neuropathologica, 2008, 116, 159-167.	7.7	50
421	Frontotemporal Dementia Mimicking Dementia With Lewy Bodies. Cognitive and Behavioral Neurology, 2008, 21, 157-163.	0.9	50
422	An evaluation of the impact of <i>MAPT </i> , <i>SNCA </i> and <i>APOE </i> on the burden of Alzheimer's and Lewy body pathology. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 424-429.	1.9	50
423	Jump from Pre-mutation to Pathologic Expansion in C9orf72. American Journal of Human Genetics, 2015, 96, 962-970.	6.2	50
424	Perry Syndrome: A Distinctive Type of TDP-43 Proteinopathy. Journal of Neuropathology and Experimental Neurology, 2017, 76, 676-682.	1.7	50
425	TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer's disease. Journal of Experimental Medicine, 2018, 215, 2247-2264.	8.5	50
426	C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathologica, 2019, 138, 795-811.	7.7	50
427	Selective Vulnerability of the Nucleus Basalis of Meynert Among Neuropathologic Subtypes of Alzheimer Disease. JAMA Neurology, 2020, 77, 225.	9.0	50
428	TARDBP mutations in Parkinson's disease. Parkinsonism and Related Disorders, 2013, 19, 312-315.	2.2	49
429	Monoclonal antibodies to purified cortical lewy bodies recognize the mid-size neurofilament subunit. Annals of Neurology, 1997, 42, 595-603.	5.3	48
430	Argyrophilic Grain Disease in Demented Subjects Presenting Initially With Amnestic Mild Cognitive Impairment. Journal of Neuropathology and Experimental Neurology, 2006, 65, 602-609.	1.7	48
431	Altered Expression of Zonula Occludens-2 Precedes Increased Blood–Brain Barrier Permeability in a Murine Model of Fulminant Hepatic Failure. Journal of Investigative Surgery, 2008, 21, 101-108.	1.3	48
432	Transactivation Response DNA-Binding Protein 43 Microvasculopathy in Frontotemporal Degeneration and Familial Lewy Body Disease. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1167-1176.	1.7	48

#	Article	IF	CITATIONS
433	Concordant Association of Insulin Degrading Enzyme Gene (IDE) Variants with IDE mRNA, Aß, and Alzheimer's Disease. PLoS ONE, 2010, 5, e8764.	2.5	48
434	Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics, 2011, 12, 527.	2.8	48
435	Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiology of Aging, 2014, 35, 1769-1777.	3.1	48
436	<i>PARK10</i> is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology, 2015, 84, 972-980.	1.1	48
437	Duration and Pathologic Correlates of Lewy Body Disease. JAMA Neurology, 2017, 74, 310.	9.0	48
438	A candidate regulatory variant at the <i>TREM</i> gene cluster associates with decreased Alzheimer's disease risk and increased <i>TREML1</i> and <i>TREM2</i> brain gene expression. Alzheimer's and Dementia, 2017, 13, 663-673.	0.8	48
439	<scp>S</scp> tudy of <i>LRRK2</i> variation in tauopathy: Progressive supranuclear palsy and corticobasal degeneration. Movement Disorders, 2017, 32, 115-123.	3.9	48
440	Neuroimaging correlates with neuropathologic schemes in neurodegenerative disease. Alzheimer's and Dementia, 2019, 15, 927-939.	0.8	48
441	ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathologica, 2019, 138, 49-65.	7.7	48
442	rAAV-based brain slice culture models of Alzheimer's and Parkinson's disease inclusion pathologies. Journal of Experimental Medicine, 2019, 216, 539-555.	8.5	48
443	Cerebral Granular Cell Tumor. Journal of Neuropathology and Experimental Neurology, 1986, 45, 304-316.	1.7	47
444	Clinical-pathologic study of biomarkers in FTDP-17 (PPND family with N279K tau mutation). Parkinsonism and Related Disorders, 2007, 13, 230-239.	2.2	47
445	Hippocampal sclerosis in tau-negative frontotemporal lobar degeneration. Neurobiology of Aging, 2007, 28, 1718-1722.	3.1	47
446	The ups and downs of î±-synuclein mRNA expression. Movement Disorders, 2007, 22, 293-295.	3.9	47
447	MRI Correlates of Protein Deposition and Disease Severity in Postmortem Frontotemporal Lobar Degeneration. Neurodegenerative Diseases, 2009, 6, 106-117.	1.4	47
448	Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy. Acta Neuropathologica, 2018, 136, 709-727.	7.7	47
449	Subtypes of dementia with Lewy bodies are associated with \hat{l}_{\pm} -synuclein and tau distribution. Neurology, 2020, 95, e155-e165.	1.1	47
450	MR imaging of brainstem atrophy in progressive supranuclear palsy. Journal of Neurology, 2008, 255, 37-44.	3.6	46

#	Article	IF	Citations
451	Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction. Acta Neuropathologica, 2012, 123, 807-823.	7.7	46
452	<i>LRRK2</i> exonic variants and risk of multiple system atrophy. Neurology, 2014, 83, 2256-2261.	1.1	46
453	Distribution and characteristics of transactive response DNA binding protein 43 kDa pathology in progressive supranuclear palsy. Movement Disorders, 2017, 32, 246-255.	3.9	46
454	Cognitive impairment in progressive supranuclear palsy is associated with tau burden. Movement Disorders, 2017, 32, 1772-1779.	3.9	46
455	Brain volume and flortaucipir analysis of progressive supranuclear palsy clinical variants. NeuroImage: Clinical, 2020, 25, 102152.	2.7	46
456	Abnormal daytime sleepiness in dementia with Lewy bodies compared to Alzheimer's disease using the Multiple Sleep Latency Test. Alzheimer's Research and Therapy, 2014, 6, 76.	6.2	45
457	Antemortem MRI findings associated with microinfarcts at autopsy. Neurology, 2014, 82, 1951-1958.	1.1	45
458	Genetic Screening and Functional Characterization of <i>PDGFRB </i> Mutations Associated with Basal Ganglia Calcification of Unknown Etiology. Human Mutation, 2014, 35, 964-971.	2.5	45
459	Protein contributions to brain atrophy acceleration in Alzheimer's disease and primary age-related tauopathy. Brain, 2020, 143, 3463-3476.	7.6	45
460	Hippocampal Sclerosis and Ubiquitin-Positive Inclusions in Dementia Lacking Distinctive Histopathology. Dementia and Geriatric Cognitive Disorders, 2004, 17, 342-345.	1.5	44
461	Convergence of pathology in dementia with Lewy bodies and Alzheimer's disease: a role for the novel interaction of alpha-synuclein and presenilin 1 in disease. Brain, 2014, 137, 1958-1970.	7.6	44
462	Plasma sphingolipid changes with autopsyâ€confirmed Lewy body or Alzheimer's pathology. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 3, 43-50.	2.4	44
463	Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain, 2020, 143, 1905-1919.	7.6	44
464	Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer's disease. Nature Communications, 2021, 12, 2311.	12.8	44
465	<i>APOE</i> E4 is a determinant for Alzheimer type pathology in progressive supranuclear palsy. Neurology, 2003, 60, 240-245.	1.1	43
466	Apoptosis in oligodendrocytes is associated with axonal degeneration in P301L tau mice. Neurobiology of Disease, 2004, 15, 553-562.	4.4	43
467	Glucocerebrosidase mutations in diffuse Lewy body disease. Parkinsonism and Related Disorders, 2011, 17, 55-57.	2.2	43
468	Three sib-pairs of autopsy-confirmed progressive supranuclear palsy. Parkinsonism and Related Disorders, 2015, 21, 101-105.	2.2	42

#	Article	IF	CITATIONS
469	Deciphering cellular transcriptional alterations in Alzheimer's disease brains. Molecular Neurodegeneration, 2020, 15, 38.	10.8	42
470	Loss of homeostatic microglial phenotype in CSF1R-related Leukoencephalopathy. Acta Neuropathologica Communications, 2020, 8, 72.	5.2	42
471	The Etiopathogenesis of Parkinson Disease and Suggestions for Future Research. Part II. Journal of Neuropathology and Experimental Neurology, 2007, 66, 329-336.	1.7	41
472	<i>>FGF20</i> and Parkinson's disease: No evidence of association or pathogenicity via αâ€synuclein expression. Movement Disorders, 2009, 24, 455-459.	3.9	41
473	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	9.0	41
474	An investigation of cerebrovascular lesions in dementia with Lewy bodies compared to Alzheimer's disease. Alzheimer's and Dementia, 2017, 13, 257-266.	0.8	41
475	Association of common KIBRA variants with episodic memory and AD risk. Neurobiology of Aging, 2011, 32, 557.e1-557.e9.	3.1	40
476	Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD. Acta Neuropathologica, 2013, 125, 741-752.	7.7	40
477	Systems biology approach to late-onset Alzheimer's disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments., 2017, 13, 1133-1142.		40
478	Conserved DNA methylation combined with differential frontal cortex and cerebellar expression distinguishes C9orf72-associated and sporadic ALS, and implicates SERPINA1 in disease. Acta Neuropathologica, 2017, 134, 715-728.	7.7	40
479	Establishing diagnostic criteria for Perry syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 482-487.	1.9	40
480	Extensive transcriptomic study emphasizes importance of vesicular transport in C9orf72 expansion carriers. Acta Neuropathologica Communications, 2019, 7, 150.	5.2	40
481	Nonvasculitic autoimmune inflammatory meningoencephalitis. Neuropathology, 2004, 24, 149-152.	1.2	39
482	TDP-43 in neurodegenerative disorders. Expert Opinion on Biological Therapy, 2008, 8, 969-978.	3.1	39
483	Reply to: SNCA variants are associated with increased risk of multiple system atrophy. Annals of Neurology, 2010, 67, 414-415.	5.3	39
484	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
485	Association of <i>MAPT</i> Subhaplotypes With Risk of Progressive Supranuclear Palsy and Severity of Tau Pathology. JAMA Neurology, 2019, 76, 710.	9.0	39
486	A presenilin 1 mutation (L420R) in a family with early onset Alzheimer disease, seizures and cotton wool plaques, but not spastic paraparesis. Neuropathology, 2007, 27, 228-232.	1.2	38

#	Article	IF	CITATIONS
487	Familial idiopathic basal ganglia calcification: a challenging clinical–pathological correlation. Journal of Neurology, 2009, 256, 839-842.	3.6	38
488	Cell type specific sequestration of choline acetyltransferase and tyrosine hydroxylase within Lewy bodies. Acta Neuropathologica, 2010, 120, 633-639.	7.7	38
489	A novel tau mutation, p.K317N, causes globular glial tauopathy. Acta Neuropathologica, 2015, 130, 199-214.	7.7	38
490	Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG). Journal of Neuropathology and Experimental Neurology, 2017, 76, 605-619.	1.7	38
491	Clinical and neuropathological features of ALS/FTD with TIA1 mutations. Acta Neuropathologica Communications, 2017, 5, 96.	5. 2	38
492	Neuronal intranuclear inclusion disease is genetically heterogeneous. Annals of Clinical and Translational Neurology, 2020, 7, 1716-1725.	3.7	38
493	Tau isoforms are differentially expressed across the hippocampus in chronic traumatic encephalopathy and Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 86.	5 . 2	38
494	<i>ATP13A2</i> variability in Parkinson disease. Human Mutation, 2009, 30, 406-410.	2.5	37
495	Atypical Motor and Behavioral Presentations of Alzheimer Disease. Neurologist, 2012, 18, 266-272.	0.7	37
496	Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia. Brain, 2013, 136, 455-470.	7.6	37
497	Diffuse Lewy body disease manifesting as corticobasal syndrome. Neurology, 2018, 91, e268-e279.	1.1	37
498	Antemortem volume loss mirrors TDP-43 staging in older adults with non-frontotemporal lobar degeneration. Brain, 2019, 142, 3621-3635.	7.6	37
499	<i>APOE3</i> -Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Science Translational Medicine, 2021, 13, eabc9375.	12.4	37
500	Progressive white matter pathology in the spinal cord of transgenic mice expressing mutant (P301L) human tau. Journal of Neurocytology, 2005, 34, 397-410.	1.5	36
501	Tau gene transfer, but not alpha-synuclein, induces both progressive dopamine neuron degeneration and rotational behavior in the rat. Neurobiology of Disease, 2005, 20, 64-73.	4.4	36
502	Coexistence of PSP and MSA: a case report and review of the literature. Acta Neuropathologica, 2006, 111, 186-192.	7.7	36
503	Progranulin gene mutation with an unusual clinical and neuropathologic presentation. Movement Disorders, 2008, 23, 1168-1173.	3.9	36
504	Glucosidase-beta variations and Lewy body disorders. Parkinsonism and Related Disorders, 2009, 15, 414-416.	2.2	36

#	Article	IF	Citations
505	Mitotic defects lead to neuronal aneuploidy and apoptosis in frontotemporal lobar degeneration caused by MAPT mutations. Molecular Biology of the Cell, 2018, 29, 575-586.	2.1	36
506	In vivo binding of a tau imaging probe, [11C]PBB3, in patients with progressive supranuclear palsy. Movement Disorders, 2019, 34, 744-754.	3.9	36
507	Trans-synaptic and retrograde axonal spread of Lewy pathology following pre-formed fibril injection in an in vivo A53T alpha-synuclein mouse model of synucleinopathy. Acta Neuropathologica Communications, 2020, 8, 150.	5.2	36
508	Cathepsin D regulates cerebral A \hat{l}^2 42/40 ratios via differential degradation of A \hat{l}^2 42 and A \hat{l}^2 40. Alzheimer's Research and Therapy, 2020, 12, 80.	6.2	36
509	Ubiquitin Immunohistochemistry of Frontotemporal Lobar Degeneration Differentiates Cases With and Without Motor Neuron Disease. Alzheimer Disease and Associated Disorders, 2005, 19, S37-S43.	1.3	35
510	Clinical Features of Pathologic Subtypes of Behavioral-Variant Frontotemporal Dementia. Archives of Neurology, 2007, 64, 1611.	4.5	35
511	Quantitative PCR-based screening of α-synuclein multiplication in multiple system atrophy. Parkinsonism and Related Disorders, 2007, 13, 340-342.	2.2	35
512	Early Onset Familial Alzheimer Disease With Spastic Paraparesis, Dysarthria, and Seizures and N135S Mutation in PSEN1. Alzheimer Disease and Associated Disorders, 2008, 22, 299-307.	1.3	35
513	Is pathological aging a successful resistance against amyloid-beta or preclinical Alzheimer's disease?. Alzheimer's Research and Therapy, 2014, 6, 24.	6.2	35
514	Genetic Disorders with Tau Pathology: A Review of the Literature and Report of Two Patients with Tauopathy and Positive Family Histories. Neurodegenerative Diseases, 2016, 16, 12-21.	1.4	35
515	Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 102-111.	1.7	35
516	Loss of Tmem106b exacerbates <scp>FTLD</scp> pathologies and causes motor deficits in progranulinâ€deficient mice. EMBO Reports, 2020, 21, e50197.	4.5	35
517	Comparison of Risk Factor Profiles in Incidental Lewy Body Disease and Parkinson Disease. Archives of Neurology, 2009, 66, 1114-9.	4.5	34
518	Clinicopathologic subtype of Alzheimer's disease presenting as corticobasal syndrome. Alzheimer's and Dementia, 2019, 15, 1218-1228.	0.8	34
519	Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 1372-1383.	0.8	34
520	Elevated methylation levels, reduced expression levels, and frequent contractions in a clinical cohort of C9orf72 expansion carriers. Molecular Neurodegeneration, 2020, 15, 7.	10.8	34
521	Mitophagy alterations in Alzheimer's disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimer's and Dementia, 2021, 17, 417-430.	0.8	34
522	A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech. Nature Communications, 2021, 12, 3452.	12.8	34

#	Article	IF	CITATIONS
523	Central Nervous System Pathology in Pediatric AIDS. Annals of the New York Academy of Sciences, 1993, 693, 93-106.	3.8	33
524	Identification of proteins in human substantia nigra. Proteomics - Clinical Applications, 2008, 2, 776-782.	1.6	33
525	Deep learningâ€based model for diagnosing Alzheimer's disease and tauopathies. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	33
526	Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Reports, 2021, 36, 109581.	6.4	33
527	In situ hybridization for detection of nocardial 16S rRNA: reactivity within intracellular inclusions in experimentally infected cynomolgus monkeys—and in Lewy body-containing human brain specimens. Experimental Neurology, 2003, 184, 715-725.	4.1	32
528	Linking Selective Vulnerability to Cell Death Mechanisms in Parkinson's Disease. American Journal of Pathology, 2007, 170, 16-19.	3.8	32
529	Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. Alzheimer's Research and Therapy, 2015, 7, 8.	6.2	32
530	<i>MAPT</i> haplotype H1G is associated with increased risk of dementia with Lewy bodies. Alzheimer's and Dementia, 2016, 12, 1297-1304.	0.8	32
531	Predicting Survival in Dementia With Lewy Bodies With Hippocampal Volumetry. Movement Disorders, 2016, 31, 989-994.	3.9	32
532	Dipeptide repeat (DPR) pathology in the skeletal muscle of ALS patients with C9ORF72 repeat expansion. Acta Neuropathologica, 2019, 138, 667-670.	7.7	32
533	Sensitivity–Specificity of Tau and Amyloid β Positron Emission Tomography in Frontotemporal Lobar Degeneration. Annals of Neurology, 2020, 88, 1009-1022.	5.3	32
534	Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathologica Communications, 2021, 9, 134.	5.2	32
535	C9ORF72 repeat expansions and other FTD gene mutations in a clinical AD patient series from Mayo Clinic. American Journal of Neurodegenerative Disease, 2012, 1, 107-18.	0.1	32
536	The Distribution and Biochemical Properties of a Cdc2-Related Kinase, KKIALRE, in Normal and Alzheimer Brains. Journal of Neurochemistry, 2002, 65, 2577-2584.	3.9	31
537	The Effect of tau genotype on clinical features in FTDP-17. Parkinsonism and Related Disorders, 2005, 11, 205-208.	2.2	31
538	Similarities between familial and sporadic autopsy-proven progressive supranuclear palsy. Neurology, 2013, 80, 2076-2078.	1.1	31
539	Role for the microtubule-associated protein tau variant p.A152T in risk of \hat{l}_{\pm} -synucleinopathies. Neurology, 2015, 85, 1680-1686.	1.1	31
540	Tissue Transglutaminase and Its Product Isopeptide Are Increased in Alzheimer's Disease and APPswe/PS1dE9 Double Transgenic Mice Brains. Molecular Neurobiology, 2016, 53, 5066-5078.	4.0	31

#	Article	IF	Citations
541	Tau immunoreactivity and SDS solubility of two populations of paired helical filaments that differ in morphology. Brain Research, 1994, 649, 185-196.	2.2	30
542	Rates of cerebral atrophy in autopsy-confirmed progressive supranuclear palsy. Annals of Neurology, 2006, 59, 200-203.	5.3	30
543	Age and apoE associations with complex pathologic features in Alzheimer's disease. Journal of the Neurological Sciences, 2008, 273, 34-39.	0.6	30
544	Populationâ€specific frequencies for <i>LRRK2</i> susceptibility variants in the genetic epidemiology of Parkinson's disease (GEOâ€PD) consortium. Movement Disorders, 2013, 28, 1740-1744.	3.9	30
545	Progressive amnestic dementia, hippocampal sclerosis, and mutation in C9ORF72. Acta Neuropathologica, 2013, 126, 545-554.	7.7	30
546	LRRK2 variation and dementia with Lewy bodies. Parkinsonism and Related Disorders, 2016, 31, 98-103.	2.2	30
547	TMEM106B haplotypes have distinct gene expression patterns in aged brain. Molecular Neurodegeneration, 2018, 13, 35.	10.8	30
548	The AD tau core spontaneously self-assembles and recruits full-length tau to filaments. Cell Reports, 2021, 34, 108843.	6.4	30
549	Research goals in progressive supranuclear palsy. Movement Disorders, 2000, 15, 446-458.	3.9	29
550	Regional proton magnetic resonance spectroscopy patterns in dementia with Lewy bodies. Neurobiology of Aging, 2014, 35, 1483-1490.	3.1	29
551	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	4.4	29
552	Ethnoracial differences in Alzheimer's disease from the FLorida Autopsied Multiâ€Ethnic (FLAME) cohort. Alzheimer's and Dementia, 2019, 15, 635-643.	0.8	29
553	Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy, 2021, 17, 2613-2628.	9.1	29
554	Extending the clinicopathological spectrum of neurofilament inclusion disease. Acta Neuropathologica, 2005, 109, 427-432.	7.7	28
555	Expanded <i>C9ORF72</i> Hexanucleotide Repeat in Depressive Pseudodementia. JAMA Neurology, 2014, 71, 775.	9.0	28
556	Tau exhibits unique seeding properties in globular glial tauopathy. Acta Neuropathologica Communications, 2019, 7, 36.	5. 2	28
557	Absence of Rapid Eye Movement Sleep Behavior Disorder in 11 Members of the Pallidopontonigral Degeneration Kindred. Archives of Neurology, 2006, 63, 268.	4.5	27
558	Suppression of galactosylceramidase (GALC) expression in the twitcher mouse model of globoid cell leukodystrophy (GLD) is caused by nonsense-mediated mRNA decay (NMD). Neurobiology of Disease, 2006, 23, 273-280.	4.4	27

#	Article	IF	Citations
559	A Novel Tau Mutation in Exon 12, p.Q336H, Causes Hereditary Pick Disease. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1042-1052.	1.7	27
560	Proaggregant nuclear factor(s) trigger rapid formation of \hat{l}_{\pm} -synuclein aggregates in apoptotic neurons. Acta Neuropathologica, 2016, 132, 77-91.	7.7	27
561	Genome-wide pleiotropy analysis of neuropathological traits related to Alzheimer's disease. Alzheimer's Research and Therapy, 2018, 10, 22.	6.2	27
562	Utility of FDG-PET in diagnosis of Alzheimer-related TDP-43 proteinopathy. Neurology, 2020, 95, e23-e34.	1.1	27
563	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	5.2	27
564	TSC1 loss increases risk for tauopathy by inducing tau acetylation and preventing tau clearance via chaperone-mediated autophagy. Science Advances, 2021, 7, eabg3897.	10.3	27
565	Hippocampal sclerosis dementia. Neurology, 2004, 63, 414-415.	1.1	26
566	Ballooned neurones in the limbic lobe are associated with Alzheimer type pathology and lack diagnostic specificity. Neuropathology and Applied Neurobiology, 2004, 30, 676-682.	3.2	26
567	Neurofibrillary tangle-related synaptic alterations of spinal motor neurons of P301L tau transgenic mice. Neuroscience Letters, 2006, 409, 95-99.	2.1	26
568	Neuropsychological findings in clinically atypical autopsy confirmed corticobasal degeneration and progressive supranuclear palsy. Parkinsonism and Related Disorders, 2008, 14, 376-378.	2.2	26
569	Neuropathology of Hippocampal Sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 569-572.	1.8	26
570	Progressive Supranuclear Palsy: High-Field-Strength MR Microscopy in the Human Substantia Nigra and Globus Pallidus. Radiology, 2013, 266, 280-288.	7.3	26
571	<i>ABCA7</i> loss-of-function variants, expression, and neurologic disease risk. Neurology: Genetics, 2017, 3, e126.	1.9	26
572	Astrocyte-derived clusterin suppresses amyloid formation in vivo. Molecular Neurodegeneration, 2020, 15, 71.	10.8	26
573	Primary central nervous system lymphoma in a pediatric patient with acquired immune deficiency syndrome: Treatment with radiation therapy. Cancer, 1990, 66, 2503-2508.	4.1	25
574	Productive Infection of Human Fetal Microglia in Vitro by HIV-1. Annals of the New York Academy of Sciences, 1993, 693, 314-316.	3.8	25
575	Decreases in soluble \hat{l}_{\pm} -synuclein in frontal cortex correlate with cognitive decline in the elderly. Neuroscience Letters, 2004, 359, 104-108.	2.1	25
576	Clinical Characterization of a Kindred With a Novel 12-Octapeptide Repeat Insertion in the Prion Protein Gene. Archives of Neurology, 2011, 68, 1165.	4.5	25

#	Article	IF	Citations
577	Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 463-469.	1.7	25
578	Effects of the C57BL/6 strain background on tauopathy progression in the rTg4510 mouse model. Molecular Neurodegeneration, 2014, 9, 8.	10.8	25
579	Adultâ€onset cerebelloâ€brainstem dominant form of Xâ€linked adrenoleukodystrophy presenting as multiple system atrophy: case report and literature review. Neuropathology, 2016, 36, 64-76.	1.2	25
580	Apolipoprotein E regulates lipid metabolism and \hat{l}_{\pm} -synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathologica, 2021, 142, 807-825.	7.7	25
581	The subthalamic nucleus has neurofibrillary tangles in argyrophilic grain disease and advanced Alzheimer's disease. Neuroscience Letters, 2002, 320, 81-85.	2.1	24
582	Familial Primary Progressive Aphasia. Alzheimer Disease and Associated Disorders, 2003, 17, 106-112.	1.3	24
583	FRONTOTEMPORAL LOBAR DEGENERATION WITH UPPER MOTOR NEURON DISEASE/ PRIMARY LATERAL SCLEROSIS. Neurology, 2007, 69, 1800-1801.	1.1	24
584	Robust cytoplasmic accumulation of phosphorylated TDP-43 in transgenic models of tauopathy. Acta Neuropathologica, 2013, 126, 39-50.	7.7	24
585	Clinicopathologic variability of the <i>GRN</i> A9D mutation, including amyotrophic lateral sclerosis. Neurology, 2013, 80, 1771-1777.	1.1	24
586	Absence of <i>C9ORF72</i> expanded or intermediate repeats in autopsyâ€confirmed Parkinson's disease. Movement Disorders, 2014, 29, 827-830.	3.9	24
587	A truncating SOD1 mutation, p.Gly141X, is associated with clinical and pathologic heterogeneity, including frontotemporal lobar degeneration. Acta Neuropathologica, 2015, 130, 145-157.	7.7	24
588	Neonatal AAV delivery of alpha-synuclein induces pathology in the adult mouse brain. Acta Neuropathologica Communications, 2017, 5, 51.	5.2	24
589	Dipeptide repeat proteins activate a heat shock response found in C9ORF72-ALS/FTLD patients. Acta Neuropathologica Communications, 2018, 6, 55.	5.2	24
590	Clusterin ameliorates tau pathology in vivo by inhibiting fibril formation. Acta Neuropathologica Communications, 2020, 8, 210.	5.2	24
591	APOE4 exacerbates α-synuclein seeding activity and contributes to neurotoxicity in Alzheimer's disease with Lewy body pathology. Acta Neuropathologica, 2022, 143, 641-662.	7.7	24
592	Paired helical filaments in corticobasal degeneration: the fine fibrillary structure with NanoVan. Brain Research, 1997, 773, 33-44.	2.2	23
593	Building a More Perfect Beast. American Journal of Pathology, 2004, 164, 1143-1146.	3.8	23
594	Clinical Features and Survival of 3R and 4R Tauopathies Presenting as Behavioral Variant Frontotemporal Dementia. Alzheimer Disease and Associated Disorders, 2007, 21, S39-S43.	1.3	23

#	Article	IF	Citations
595	MAPT haplotype diversity in multiple system atrophy. Parkinsonism and Related Disorders, 2016, 30, 40-45.	2.2	23
596	Evaluating pathogenic dementia variants in posterior cortical atrophy. Neurobiology of Aging, 2016, 37, 38-44.	3.1	23
597	Identification and functional characterization of novel mutations including frameshift mutation in exon 4 of CSF1R in patients with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. Journal of Neurology, 2018, 265, 2415-2424.	3.6	23
598	Divergent Phenotypes in Mutant TDP-43 Transgenic Mice Highlight Potential Confounds in TDP-43 Transgenic Modeling. PLoS ONE, 2014, 9, e86513.	2.5	23
599	Screening for neurofilament inclusion disease using α-internexin immunohistochemistry. Neurology, 2005, 64, 1658-1659.	1.1	22
600	TDP-43 immunoreactivity in neurodegenerative disorders: disease versus mechanism specificity. Acta Neuropathologica, 2007, 115, 147-149.	7.7	22
601	TDP-43 in Alzheimer's disease is not associated with clinical FTLD or Parkinsonism. Journal of Neurology, 2014, 261, 1344-1348.	3.6	22
602	Daytime sleepiness in dementia with Lewy bodies is associated with neuronal depletion of the nucleus basalis of Meynert. Parkinsonism and Related Disorders, 2018, 50, 99-103.	2.2	22
603	Machine learningâ€based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration. Neuropathology and Applied Neurobiology, 2021, 47, 931-941.	3.2	22
604	Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of poly-GA aggregation. Acta Neuropathologica Communications, 2022, 10, 22.	5.2	22
605	SARS-CoV-2 Brain Regional Detection, Histopathology, Gene Expression, and Immunomodulatory Changes in Decedents with COVID-19. Journal of Neuropathology and Experimental Neurology, 2022, 81, 666-695.	1.7	22
606	Distinguishing primary angiitis of the central nervous system from cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: The importance of family history. Arthritis and Rheumatism, 1999, 42, 2243-2248.	6.7	21
607	The relationship between histopathological features of progressive supranuclear palsy and disease duration. Parkinsonism and Related Disorders, 2006, 12, 109-112.	2.2	21
608	Heterogeneous inclusions in neurofilament inclusion disease. Neuropathology, 2006, 26, 417-421.	1.2	21
609	Globular Glial Tauopathy Presenting as Semantic Variant Primary Progressive Aphasia. JAMA Neurology, 2016, 73, 123.	9.0	21
610	RAB39B gene mutations are not a common cause of Parkinson's disease or dementia with Lewy bodies. Neurobiology of Aging, 2016, 45, 107-108.	3.1	21
611	C9orf72 promoter hypermethylation is reduced while hydroxymethylation is acquired during reprogramming of ALS patient cells. Experimental Neurology, 2016, 277, 171-177.	4.1	21
612	Crystal structure of a conformational antibody that binds tau oligomers and inhibits pathological seeding by extracts from donors with Alzheimer's disease. Journal of Biological Chemistry, 2020, 295, 10662-10676.	3.4	21

#	Article	IF	Citations
613	Analysis of \hat{l}_{\pm} -synuclein species enriched from cerebral cortex of humans with sporadic dementia with Lewy bodies. Brain Communications, 2020, 2, fcaa010.	3.3	21
614	Lewy Body Disease is a Contributor to Logopenic Progressive Aphasia Phenotype. Annals of Neurology, 2021, 89, 520-533.	5.3	21
615	Deep Learning-Based Image Classification in Differentiating Tufted Astrocytes, Astrocytic Plaques, and Neuritic Plaques. Journal of Neuropathology and Experimental Neurology, 2021, 80, 306-312.	1.7	21
616	Multicystic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 1995, 54, 268-275.	1.7	20
617	Induction of Alzheimer-specific tau epitope AT100 in apoptotic human fetal astrocytes. Cytoskeleton, 2000, 47, 236-252.	4.4	20
618	Cognitive Performance Correlates with Cortical Isopeptide Immunoreactivity as Well as Alzheimer Type Pathology. Journal of Alzheimer's Disease, 2008, 13, 53-66.	2.6	20
619	Right temporal variant frontotemporal dementia with motor neuron disease. Journal of Clinical Neuroscience, 2012, 19, 85-91.	1.5	20
620	Sequence variants in eukaryotic translation initiation factor 4-gamma (eIF4G1) are associated with Lewy body dementia. Acta Neuropathologica, 2013, 125, 425-438.	7.7	20
621	Clinical, positron emission tomography, and pathological studies of DNAJC13 p.N855S Parkinsonism. Movement Disorders, 2014, 29, 1684-1687.	3.9	20
622	microRNA profiling: increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP). Neurogenetics, 2016, 17, 165-171.	1.4	20
623	Histones facilitate \hat{I} ±-synuclein aggregation during neuronal apoptosis. Acta Neuropathologica, 2017, 133, 547-558.	7.7	20
624	Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Acta Neuropathologica Communications, 2018, 6, 42.	5.2	20
625	Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1. Nature Communications, 2018, 9, 2929.	12.8	20
626	TDP-43 and Alzheimer's Disease Pathologic Subtype in Non-Amnestic Alzheimer's Disease Dementia. Journal of Alzheimer's Disease, 2018, 64, 1227-1233.	2.6	20
627	Microglia in frontotemporal lobar degeneration with progranulin or C9ORF72 mutations. Annals of Clinical and Translational Neurology, 2019, 6, 1782-1796.	3.7	20
628	Ubiquitin immunoreactivity in kuru plaques in Creutzfeldt-Jakob disease. Annals of Neurology, 1990, 28, 174-177.	5.3	19
629	Contrasting genotypes of the tau gene in two phenotypically distinct patients with P301L mutation of frontotemporal dementia and parkinsonism linked to chromosome 17. Journal of Neurology, 2002, 249, 669-675.	3.6	19
630	Is the neuropathological †gold standard' diagnosis dead? Implications of clinicopathological findings in an autosomal dominant neurodegenerative disorder. Parkinsonism and Related Disorders, 2004, 10, 461-463.	2.2	19

#	Article	IF	CITATIONS
631	Identification of G-Protein Coupled Receptor Kinase 2 in Paired Helical Filaments and Neurofibrillary Tangles. Journal of Neuropathology and Experimental Neurology, 2006, 65, 1157-1169.	1.7	19
632	Clinicopathologic and genetic features of multiple system atrophy with Lewy body disease. Brain Pathology, 2020, 30, 766-778.	4.1	19
633	Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathologica, 2022, 143, 33-53.	7.7	19
634	Diversity of pathological features other than Lewy bodies in familial Parkinson's disease due to SNCA mutations. American Journal of Neurodegenerative Disease, 2013, 2, 266-75.	0.1	19
635	The temporal onset of the core features in dementia with Lewy bodies. Alzheimer's and Dementia, 2022, 18, 591-601.	0.8	19
636	Sporadic tauopathies: Pick's disease, corticobasal degeneration, progressive supranuclear palsy and argyrophilic grain disease. , 2004, , 227-256.		18
637	Alphaâ€synuclein immunohistochemistry in two cases of coâ€occurring idiopathic Parkinson's disease and motor neuron disease. Movement Disorders, 2005, 20, 1515-1520.	3.9	18
638	Heterodimerization of Lrrk1–Lrrk2: Implications for LRRK2-associated Parkinson disease. Mechanisms of Ageing and Development, 2010, 131, 210-214.	4.6	18
639	Aberrant Accumulation of BRCA1 in Alzheimer Disease and Other Tauopathies. Journal of Neuropathology and Experimental Neurology, 2020, 79, 22-33.	1.7	18
640	Confirmation of ¹²³ I-FP-CIT SPECT Quantification Methods in Dementia with Lewy Bodies and Other Neurodegenerative Disorders. Journal of Nuclear Medicine, 2020, 61, 1628-1635.	5.0	18
641	Neuropathology of two members of a German-American kindred (Family C) with late onset parkinsonism. Acta Neuropathologica, 2002, 103, 344-350.	7.7	17
642	Aging is Neuroprotective During Global Ischemia but Leads to Increased Caspase-3 and Apoptotic Activity in Hippocampal Neurons. Current Neurovascular Research, 2006, 3, 181-186.	1.1	17
643	Association and heterogeneity at the GAPDH locus in Alzheimer's disease. Neurobiology of Aging, 2012, 33, 203.e25-203.e33.	3.1	17
644	Tremor in progressive supranuclear palsy. Parkinsonism and Related Disorders, 2016, 27, 93-97.	2.2	17
645	Parkinson's disease susceptibility variants and severity of Lewy body pathology. Parkinsonism and Related Disorders, 2017, 44, 79-84.	2.2	17
646	18F-fluorodeoxyglucose positron emission tomography in dementia with Lewy bodies. Brain Communications, 2020, 2, fcaa040.	3.3	17
647	Long-read targeted sequencing uncovers clinicopathological associations for <i>C9orf72</i> -linked diseases. Brain, 2021, 144, 1082-1088.	7.6	17
648	Pick's disease: clinicopathologic characterization of 21 cases. Journal of Neurology, 2020, 267, 2697-2704.	3.6	17

#	Article	IF	Citations
649	Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups. Brain, 2022, 145, 1757-1762.	7.6	17
650	Inferior olivary hypertrophy is uncommon in progressive supranuclear palsy. Acta Neuropathologica, 2004, 108, 143-6.	7.7	16
651	Corticobasal syndrome with Alzheimer's disease pathology. Movement Disorders, 2009, 24, 152-153.	3.9	16
652	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 679.	10.2	16
653	TREM2 p.R47H substitution is not associated with dementia with Lewy bodies. Neurology: Genetics, 2016, 2, e85.	1.9	16
654	Progressive supranuclear palsy is not associated with neurogenic orthostatic hypotension. Neurology, 2019, 93, e1339-e1347.	1.1	16
655	Hereditary diffuse leukoencephalopathy with spheroids: ultrastructural and immunoelectron microscopic studies. International Journal of Clinical and Experimental Pathology, 2010, 3, 665-74.	0.5	16
656	In Human Fetal Astrocytes Exposure to Interleukinâ€1β Stimulates Acquisition of the GD3 ⁺ Phenotype and Inhibits Cell Division. Journal of Neurochemistry, 1995, 64, 1800-1807.	3.9	15
657	Immunoelectron Microscopic and Biochemical Studies of Caspase-Cleaved Tau in a Mouse Model of Tauopathy. Journal of Neuropathology and Experimental Neurology, 2011, 70, 779-787.	1.7	15
658	Association Between Vascular Pathology and Rate of Cognitive Decline Independent of Alzheimer's Disease Pathology. Journal of the American Geriatrics Society, 2017, 65, 1836-1841.	2.6	15
659	Regional analysis and genetic association of nigrostriatal degeneration in Lewy body disease. Movement Disorders, 2017, 32, 1584-1593.	3.9	15
660	Brain calcifications and <i>PCDH12</i> variants. Neurology: Genetics, 2017, 3, e166.	1.9	15
661	Multiple system atrophy and apolipoprotein E. Movement Disorders, 2018, 33, 647-650.	3.9	15
662	Association Between Microinfarcts and Blood Pressure Trajectories. JAMA Neurology, 2018, 75, 212.	9.0	15
663	Association of <i>MAPT</i> H1 subhaplotypes with neuropathology of lewy body disease. Movement Disorders, 2019, 34, 1325-1332.	3.9	15
664	Microglia in HIV-Related CNS Neuropathology:. Journal of Neuro-AIDS, 1995, 1, 57-83.	0.2	15
665	p62 Pathology Model in the Rat Substantia Nigra with Filamentous Inclusions and Progressive Neurodegeneration. PLoS ONE, 2017, 12, e0169291.	2.5	15
666	Longitudinal atrophy in prodromal dementia with Lewy bodies points to cholinergic degeneration. Brain Communications, 2022, 4, fcac013.	3.3	15

#	Article	IF	CITATIONS
667	Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer's disease. Acta Neurobiologiae Experimentalis, 2015, 75, 391-8.	0.7	15
668	Familial Progressive Supranuclear Palsy: A Literature Review. Neurodegenerative Diseases, 2014, 13, 180-182.	1.4	14
669	Transmission of Soluble and Insoluble α-Synuclein to Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1158-1169.	1.7	14
670	The <i>TMEM106B</i> locus and TDP-43 pathology in older persons without FTLD. Neurology, 2015, 85, 1354-1355.	1.1	14
671	Distinct spatiotemporal accumulation of N-truncated and full-length amyloid-β42 in Alzheimer's disease. Brain, 2017, 140, 3301-3316.	7.6	14
672	Cerebrovascular pathology presenting as corticobasal syndrome: An autopsy case series of "vascular CBS― Parkinsonism and Related Disorders, 2019, 68, 79-84.	2.2	14
673	Neuropathologic basis of frontotemporal dementia in progressive supranuclear palsy. Movement Disorders, 2019, 34, 1655-1662.	3.9	14
674	Brain atrophy in primary ageâ€related tauopathy is linked to transactive response DNAâ€binding protein of 43 kDa. Alzheimer's and Dementia, 2019, 15, 799-806.	0.8	14
675	Prominent auditory deficits in primary progressive aphasia: A case study. Cortex, 2019, 117, 396-406.	2.4	14
676	Effect Modifiers of TDP-43-Associated Hippocampal Atrophy Rates in Patients with Alzheimer's Disease Neuropathological Changes. Journal of Alzheimer's Disease, 2020, 73, 1511-1523.	2.6	14
677	Brainstem Biomarkers of Clinical Variant and Pathology in Progressive Supranuclear Palsy. Movement Disorders, 2022, 37, 702-712.	3.9	14
678	Frequency and distribution of TAR DNA-binding protein 43 (TDP-43) pathology increase linearly with age in a large cohort of older adults with and without dementia. Acta Neuropathologica, 2022, 144, 159-160.	7.7	14
679	Hippocampal progenitor cells express nestin following cerebral ischemia in rats. NeuroReport, 2005, 16, 1541-1544.	1.2	13
680	Amino Acid Residues 226–240 of Ï,, Which Encompass the First Lysâ€Serâ€Pro Site of Ï,, Are Partially Phosphorylated in Alzheimer Paired Helical Filamentâ€Ï,,. Journal of Neurochemistry, 1994, 62, 1055-1061.	3.9	13
681	Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS. Neurobiology of Aging, 2013, 34, 2235.e11-2235.e13.	3.1	13
682	Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer $\hat{a} \in \mathbb{M}$ s pathophysiology and susceptibility. Molecular Neurodegeneration, 2015, 10, 18.	10.8	13
683	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	3.1	13
684	Association between transactive response DNA-binding protein ofÂ43 kDa type and cognitive resilience to Alzheimer's disease: aÂcase-control study. Neurobiology of Aging, 2020, 92, 92-97.	3.1	13

#	Article	IF	CITATIONS
685	MRI quantitative susceptibility mapping of the substantia nigra as an early biomarker for Lewy body disease. Journal of Neuroimaging, 2021, 31, 1020-1027.	2.0	13
686	NONHEREDITARY DIFFUSE LEUKOENCEPHALOPATHY WITH SPHEROIDS PRESENTING AS EARLY-ONSET, RAPIDLY-PROGRESSIVE DEMENTIA. Journal of Neuropathology and Experimental Neurology, 1995, 54, 471.	1.7	13
687	Longitudinal anatomic, functional, and molecular characterization of Pick disease phenotypes. Neurology, 2020, 95, e3190-e3202.	1.1	13
688	Linking Protective GAB2 Variants, Increased Cortical GAB2 Expression and Decreased Alzheimer's Disease Pathology. PLoS ONE, 2013, 8, e64802.	2.5	13
689	Alzheimer's disease and progressive supranuclear palsy share similar transcriptomic changes in distinct brain regions. Journal of Clinical Investigation, 2022, 132, .	8.2	13
690	Biochemical characterization of torsinB. Molecular Brain Research, 2004, 127, 1-9.	2.3	12
691	Abnormal expression of homeobox genes and transthyretin in <i>C9ORF72</i> expansion carriers. Neurology: Genetics, 2017, 3, e161.	1.9	12
692	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	3.1	12
693	GBA variation and susceptibility to multiple system atrophy. Parkinsonism and Related Disorders, 2020, 77, 64-69.	2.2	12
694	Clinical features of autopsy-confirmed multiple system atrophy in the Mayo Clinic Florida brain bank. Parkinsonism and Related Disorders, 2021, 89, 155-161.	2.2	12
695	Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Scientific Reports, 2022, 12, 6117.	3.3	12
696	Endogenous Tau Aggregates in Oligodendrocytes of rTg4510 Mice Induced by Human P301L Tau. Journal of Alzheimer's Disease, 2013, 38, 589-600.	2.6	11
697	Mixed tau and TDP-43 pathology in a patient with unclassifiable primary progressive aphasia. Neurocase, 2016, 22, 55-59.	0.6	11
698	FTDPâ€17 with Pick bodyâ€like inclusions associated with a novel tau mutation, p.E372G. Brain Pathology, 2017, 27, 612-626.	4.1	11
699	"Minimal change―multiple system atrophy with limbic-predominant α-synuclein pathology. Acta Neuropathologica, 2019, 137, 167-169.	7.7	11
700	Reply: LATE to the PART-y. Brain, 2019, 142, e48-e48.	7.6	11
701	C-terminal and full length TDP-43 specie differ according to FTLD-TDP lesion type but not genetic mutation. Acta Neuropathologica Communications, 2019, 7, 100.	5.2	11
702	Cortical Alzheimer type pathology does not influence tau pathology in progressive supranuclear palsy. International Journal of Clinical and Experimental Pathology, 2009, 2, 399-406.	0.5	11

#	Article	IF	CITATIONS
703	Effect of MAPT and APOE on prognosis of progressive supranuclear palsy. Neuroscience Letters, 2006, 405, 116-119.	2.1	10
704	Anatomy of disturbed sleep in pallidoâ€pontoâ€nigral degeneration. Annals of Neurology, 2011, 69, 1014-1025.	5. 3	10
705	Frequency of spinocerebellar ataxia mutations in patients with multiple system atrophy. Clinical Autonomic Research, 2021, 31, 117-125.	2.5	10
706	Progressive Supranuclear Palsy and Corticobasal Degeneration. Advances in Experimental Medicine and Biology, 2021, 1281, 151-176.	1.6	10
707	Old age genetically confirmed frontotemporal lobar degeneration with TDPâ€43 has limbic predominant TDPâ€43 deposition. Neuropathology and Applied Neurobiology, 2021, 47, 1050-1059.	3.2	10
708	Clinical, pathological and genetic characteristics of Perry diseaseâ€"new cases and literature review. European Journal of Neurology, 2021, 28, 4010-4021.	3.3	10
709	Cerebral Amyloid Angiopathy Pathology and Its Association With Amyloid-β PET Signal. Neurology, 2021, 97, e1799-e1808.	1.1	10
710	ANTEMORTEM MEMORY IMPAIRMENT SCREEN PERFORMANCE IS CORRELATED WITH POSTMORTEM ALZHEIMER PATHOLOGY. Journal of the American Geriatrics Society, 2003, 51, 1043-1045.	2.6	9
711	Dopamine \hat{I}^2 -hydroxylase deficiency involves the central autonomic network. Acta Neuropathologica, 2006, 112, 227-229.	7.7	9
712	Pallidonigroluysian atrophy associated with p.A152T variant in MAPT. Parkinsonism and Related Disorders, 2013, 19, 838-841.	2.2	9
713	Concurrent variably protease-sensitive prionopathy and amyotrophic lateral sclerosis. Acta Neuropathologica, 2014, 128, 313-315.	7.7	9
714	PRKAR1B mutations are a rare cause of FUS negative neuronal intermediate filament inclusion disease. Brain, 2015, 138, e357-e357.	7.6	9
715	Juvenile onset Parkinsonism with "pure nigral―degeneration and POLG1 mutation. Parkinsonism and Related Disorders, 2016, 30, 83-85.	2.2	9
716	Reduced orexin immunoreactivity in Perry syndrome and multiple system atrophy. Parkinsonism and Related Disorders, 2017, 42, 85-89.	2.2	9
717	Association study between multiple system atrophy and TREM2 p.R47H. Neurology: Genetics, 2018, 4, e257.	1.9	9
718	Associations of mitochondrial genomic variation with corticobasal degeneration, progressive supranuclear palsy, and neuropathological tau measures. Acta Neuropathologica Communications, 2020, 8, 162.	5. 2	9
719	Clinical and pathologic features of cognitive-predominant corticobasal degeneration. Neurology, 2020, 95, e35-e45.	1.1	9
720	Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid pathology in Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 93.	5.2	9

#	Article	IF	Citations
721	Relationship Between ¹⁸ F-Flortaucipir Uptake and Histologic Lesion Types in 4-Repeat Tauopathies. Journal of Nuclear Medicine, 2022, 63, 931-935.	5.0	9
722	Neuropathology of progressive supranuclear palsy after treatment with tilavonemab. Lancet Neurology, The, 2021, 20, 786-787.	10.2	9
723	Concurrent tau pathologies in frontotemporal lobar degeneration with TDPâ€43 pathology. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	9
724	Investigating Statistical Epistasis in Complex Disorders. Journal of Alzheimer's Disease, 2011, 25, 635-644.	2.6	8
725	Disproportionately enlarged subarachnoid-space hydrocephalus (DESH) in normal pressure hydrocephalus misinterpreted as atrophy: autopsy and radiological evidence. Neurocase, 2019, 25, 151-155.	0.6	8
726	Association of ABI3 and PLCG2 missense variants with disease risk and neuropathology in Lewy body disease and progressive supranuclear palsy. Acta Neuropathologica Communications, 2020, 8, 172.	5.2	8
727	MAPT subhaplotypes in corticobasal degeneration: assessing associations with disease risk, severity of tau pathology, and clinical features. Acta Neuropathologica Communications, 2020, 8, 218.	5.2	8
728	Cerebrovascular pathology and misdiagnosis of multiple system atrophy: An autopsy study. Parkinsonism and Related Disorders, 2020, 75, 34-40.	2.2	8
729	Generation and Characterization of Novel Monoclonal Antibodies TargetingÂp62/sequestosome-1 Across Human Neurodegenerative Diseases. Journal of Neuropathology and Experimental Neurology, 2020, 79, 407-418.	1.7	8
730	Loss of Tmem106b leads to cerebellum Purkinje cell death and motor deficits. Brain Pathology, 2021, 31, e12945.	4.1	8
731	Cerebral Amyloid Angiopathy Burden and Cerebral Microbleeds: Pathological Evidence for Distinct Phenotypes. Journal of Alzheimer's Disease, 2021, 81, 113-122.	2.6	8
732	Neuropathological Findings of <scp>CSF1R</scp> â€Related Leukoencephalopathy After Longâ€Term Immunosuppressive Therapy. Movement Disorders, 2022, 37, 439-440.	3.9	8
733	Clinical and pathological characteristics of later onset multiple system atrophy. Journal of Neurology, 2022, 269, 4310-4321.	3. 6	8
734	Diffusion tractography of superior cerebellar peduncle and dentatorubrothalamic tracts in two autopsy confirmed progressive supranuclear palsy variants: Richardson syndrome and the speech-language variant. NeuroImage: Clinical, 2022, 35, 103030.	2.7	8
735	Senile cerebral amyloidosis (pathological aging) and cognitive status predictions: A neuropathology perspective. Neurobiology of Aging, 1996, 17, 936-937.	3.1	7
736	Neuropathology of Progressive Supranuclear Palsy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 487-491.	1.8	7
737	Clinical and electrophysiologic variability in amyotrophic lateral sclerosis within a kindred harboring the <i>C9ORF72</i> repeat expansion. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 132-137.	1.7	7
738	Genetic modification of H2AX renders mesenchymal stromal cell–derived dopamine neurons more resistant to DNA damage and subsequent apoptosis. Cytotherapy, 2016, 18, 1483-1492.	0.7	7

#	Article	lF	CITATIONS
739	TAR DNA-Binding Protein 43 Is Associated with Rate of Memory, Functional and Global Cognitive Decline in the Decade Prior to Death. Journal of Alzheimer's Disease, 2021, 80, 683-693.	2.6	7
740	Analysis of intraoperative human brain tissue transcriptome reveals putative risk genes and altered molecular pathways in glioma-related seizures. Epilepsy Research, 2021, 173, 106618.	1.6	7
741	Progressive Supranuclear Palsy and Corticobasal Degeneration. , 2001, , 155-171.		7
742	Neuropathology of Parkinson's Disease. , 2008, , 35-48.		6
743	Changes in the Expression of Genes Associated with Intraneuronal Amyloid- \hat{l}^2 and Tau in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 19, 97-109.	2.6	6
744	A familial form of parkinsonism, dementia, and motor neuron disease: A longitudinal study. Parkinsonism and Related Disorders, 2014, 20, 1129-1134.	2.2	6
745	Evaluation of Associations of Alzheimer's Disease Risk Variants that Are Highly Expressed in Microglia with Neuropathological Outcome Measures. Journal of Alzheimer's Disease, 2019, 70, 659-666.	2.6	6
746	X-Linked Lymphoproliferative Syndrome Presenting as Adult-Onset Multi-Infarct Dementia. Journal of Neuropathology and Experimental Neurology, 2019, 78, 460-466.	1.7	6
747	Association of <i>Tripartite Motif Containing 11</i> rs 564309 With Tau Pathology in Progressive Supranuclear Palsy. Movement Disorders, 2020 , 35 , 890 - 894 .	3.9	6
748	Pathologyâ€Proven Corticobasal Degeneration Presenting as Richardson's Syndrome. Movement Disorders Clinical Practice, 2020, 7, 267-272.	1.5	6
749	LRP10 variants in progressive supranuclear palsy. Neurobiology of Aging, 2020, 94, 311.e5-311.e10.	3.1	6
750	Misfolded, protease-resistant proteins in animal models and human neurodegenerative disease. Journal of Clinical Investigation, 2002, 110, 1403-1405.	8.2	6
751	Autopsy Validation of Progressive Supranuclear Palsyâ€Predominant Speech/Language Disorder Criteria. Movement Disorders, 2022, 37, 213-218.	3.9	6
752	Shared brain transcriptomic signature in TDP-43 type A FTLD patients with or without <i>GRN</i> mutations. Brain, 2022, 145, 2472-2485.	7.6	6
753	Old age amyotrophic lateral sclerosis and limbic TDPâ€43 pathology. Brain Pathology, 2022, 32, .	4.1	6
754	Brainstem atrophy on routine MR study in pallidopontonigral degeneration. Journal of Neurology, 2009, 256, 827-829.	3.6	5
755	Functional and genetic analysis of haplotypic sequence variation at the nicastrin genomic locus. Neurobiology of Aging, 2012, 33, 1848.e1-1848.e13.	3.1	5
756	Hippocampal-sparing Alzheimer's disease presenting as corticobasal syndrome. Parkinsonism and Related Disorders, 2012, 18, 683-685.	2.2	5

#	Article	IF	Citations
757	Ultrastructure of ubiquitinâ€positive, TDPâ€43â€negative neuronal inclusions in cerebral cortex of C9ORF72â€inked frontotemporal lobar degeneration/amyotrophic lateral sclerosis. Neuropathology, 2012, 32, 679-681.	1.2	5
758	Clinical presentation of a patient with SLC20A2 and THAP1 deletions: Differential diagnosis of oromandibular dystonia. Parkinsonism and Related Disorders, 2015, 21, 329-331.	2.2	5
759	Concurrent neurodegenerative pathologies in periventricular nodular heterotopia. Acta Neuropathologica, 2015, 130, 895-897.	7.7	5
760	Cerebral peduncle angle: Unreliable in differentiating progressive supranuclear palsy from other neurodegenerative diseases. Parkinsonism and Related Disorders, 2016, 32, 31-35.	2.2	5
761	αâ€ s ynuclein astrogliopathy: A possible specific feature in αâ€ s ynucleinopathy. Neuropathology, 2017, 37, 379-381.	1.2	5
762	Latent trait modeling of tau neuropathology in progressive supranuclear palsy. Acta Neuropathologica, 2021, 141, 667-680.	7.7	5
763	Neuropathology of <scp>McLeod</scp> Syndrome. Movement Disorders, 2022, 37, 644-646.	3.9	5
764	Plasma PolyQ-ATXN3 Levels Associate With Cerebellar Degeneration and Behavioral Abnormalities in a New AAV-Based SCA3 Mouse Model. Frontiers in Cell and Developmental Biology, 2022, 10, 863089.	3.7	5
765	Histologic lesion type correlates of magnetic resonance imaging biomarkers in four-repeat tauopathies. Brain Communications, 2022, 4, .	3.3	5
766	Neuropathology of Parkinson's disease after focused ultrasound thalamotomy. Npj Parkinson's Disease, 2022, 8, 59.	5. 3	5
767	<scp>GRN</scp> Mutations Are Associated with Lewy Body Dementia. Movement Disorders, 2022, 37, 1943-1948.	3.9	5
768	A proteomic study identifies different levels of light chain ferritin in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathologica, 2011, 122, 727-736.	7.7	4
769	Association of mitochondrial genomic background with risk of Multiple System Atrophy. Parkinsonism and Related Disorders, 2020, 81, 200-204.	2.2	4
770	TDP-43 is associated with a reduced likelihood of rendering a clinical diagnosis of dementia with Lewy bodies in autopsy-confirmed cases of transitional/diffuse Lewy body disease. Journal of Neurology, 2020, 267, 1444-1453.	3.6	4
771	Underlying pathology identified after 20 years of disease course in two cases of slowly progressive frontotemporal dementia syndromes. Neurocase, 2021, 27, 212-222.	0.6	4
772	Clinical, Imaging, and Pathologic Characteristics of Patients With Right vs Left Hemisphere–Predominant Logopenic Progressive Aphasia. Neurology, 2021, 97, e523-e534.	1.1	4
773	Cerebral Microvascular Erdheim-Chester Disease: A Perivascular Hematopoietic Vasculopathy. Cerebrovascular Diseases, 2021, 50, 746-751.	1.7	4
774	Limbic lobe microvacuolation is minimal in Alzheimer's disease in the absence of concurrent Lewy body disease. International Journal of Clinical and Experimental Pathology, 2008, 1, 369-75.	0.5	4

#	Article	IF	CITATIONS
775	The presenilin 1 p.Gly206Ala mutation is a frequent cause of early-onset Alzheimer's disease in Hispanics in Florida. American Journal of Neurodegenerative Disease, 2016, 5, 94-101.	0.1	4
776	Clinical Deep Phenotyping of <i>ABCA7</i> Mutation Carriers. Neurology: Genetics, 2022, 8, e655.	1.9	4
777	HDAC6 Interacts With Poly (GA) and Modulates its Accumulation in c9FTD/ALS. Frontiers in Cell and Developmental Biology, 2021, 9, 809942.	3.7	4
778	Diffuse Lewy body disease presenting as Parkinson's disease with progressive aphasia. Neuropathology, 2022, 42, 82-89.	1.2	4
779	Tau protein expression in adult bovine oligodendrocytes: functional and pathological significance. Neurochemical Research, 2003, 28, 1385-1392.	3.3	3
780	Polymorphic genes of detoxification and mitochondrial enzymes and risk for progressive supranuclear palsy: a case control study. BMC Medical Genetics, 2012, 13, 16.	2.1	3
781	Intraneuronal amyloid- \hat{l}^2 accumulation in basal forebrain cholinergic neurons: a marker of vulnerability, yet inversely related to neurodegeneration. Brain, 2015, 138, 1444-1445.	7.6	3
782	An MRIâ€Based Atlas for Correlation of Imaging and Pathologic Findings in Alzheimer's Disease. Journal of Neuroimaging, 2016, 26, 264-268.	2.0	3
783	DCTN1 variation in pathologically-confirmed PSP and CBD tauopathy. Parkinsonism and Related Disorders, 2017, 44, 151-153.	2.2	3
784	Reply re: "Profile of cognitive impairment and underlying pathology in multiple system atrophy― Movement Disorders, 2017, 32, 1339-1340.	3.9	3
785	Coexistence of Progressive Supranuclear Palsy With Pontocerebellar Atrophy and Myotonic Dystrophy Type 1. Journal of Neuropathology and Experimental Neurology, 2019, 78, 756-762.	1.7	3
786	Enhanced phosphorylation of T153 in soluble tau is a defining biochemical feature of the A152T tau risk variant. Acta Neuropathologica Communications, 2019, 7, 10.	5. 2	3
787	Novel monoclonal antibodies targeting the RRM2 domain of human TDP-43 protein. Neuroscience Letters, 2020, 738, 135353.	2.1	3
788	Orthostatic hypotension preceding dementia with Lewy bodies by over 15Âyears: a clinicopathologic case report. Clinical Autonomic Research, 2020, 30, 575-577.	2.5	3
789	Enrichment of Phosphorylated Tau (Thr181) and Functionally Interacting Molecules in Chronic Traumatic Encephalopathy Brain-derived Extracellular Vesicles. , 2021, 12, 1376.		3
790	TDP-43-associated atrophy in brains with and without frontotemporal lobar degeneration. NeuroImage: Clinical, 2022, 34, 102954.	2.7	3
791	Mismatch between plaques and tangles in staging Alzheimer pathology. Neurobiology of Aging, 1995, 16, 283-284.	3.1	2
792	Tau kinases and Parkinson's disease: Guilt by association?. Annals of Neurology, 2005, 58, 819-820.	5. 3	2

#	Article	IF	Citations
793	Chapter 7 Ubiquitinopathies. Blue Books of Neurology, 2007, , 165-185.	0.1	2
794	IN DEMENTIA WITH LEWY BODIES, BRAAK STAGE DETERMINES PHENOTYPE, NOT LEWY BODY DISTRIBUTION. Neurology, 2008, 70, 2087-2089.	1,1	2
795	GCH1 expression in human cerebellum from healthy individuals is not gender dependant. Neuroscience Letters, 2009, 462, 73-75.	2.1	2
796	Brain tau deposition linked to systemic causes of death in normal elderly. Neurobiology of Aging, 2017, 50, 163-166.	3.1	2
797	Investigating ELOVL7 coding variants in multiple system atrophy. Neuroscience Letters, 2021, 749, 135723.	2.1	2
798	Postencephalitic Parkinsonism., 0,, 179-187.		2
799	Frontotemporal lobar degeneration with upper motor neuron disease/primary lateral sclerosis. FASEB Journal, 2007, 21, A21.	0.5	2
800	Nanoparticles With Affinity for α-Synuclein Sequester α-Synuclein to Form Toxic Aggregates in Neurons With Endolysosomal Impairment. Frontiers in Molecular Neuroscience, 2021, 14, 738535.	2.9	2
801	Capgras syndrome in dementia with Lewy bodies: a possible association of severe cortical Lewy body pathology. Neurologia I Neurochirurgia Polska, 2021, , .	1.2	2
802	Asymmetrical Primary Lateral Sclerosis Presenting as Corticobasal Syndrome. Journal of Neuropathology and Experimental Neurology, 2022, 81, 154-156.	1.7	2
803	A Tribute to a Neuropathologist, Robert D. Terry. , 2005, 1, 74-76.		1
804	Neurocognitive speed associates with frontotemporal lobar degeneration TDP-43 subtypes. Journal of Clinical Neuroscience, 2013, 20, 1737-1741.	1.5	1
805	Target-enriched sequencing of chromosome 17q21.31 in sporadic tauopathies reveals no candidate variants. Neurobiology of Aging, 2018, 66, 177.e7-177.e10.	3.1	1
806	Relationships between lewy and tau pathologies in 375 consecutive nonâ€Alzheimer's olfactory bulbs. Movement Disorders, 2018, 33, 333-334.	3.9	1
807	Subventricular glial nodules in neurofibromatosis 1 with craniofacial dysmorphism and occipital meningoencephalocele. ENeurologicalSci, 2019, 17, 100213.	1.3	1
808	Apoptotic Neuron-Derived Histone Amyloid Fibrils Induce \hat{l}_{\pm} -Synuclein Aggregation. Molecular Neurobiology, 2021, 58, 867-876.	4.0	1
809	Association of Mitochondrial DNA Genomic Variation With Risk of Pick Disease. Neurology, 2021, 96, e1755-e1760.	1.1	1
810	Hematologic Emergencies in the Postoperative Neurointensive Care Unit Setting: Illustrative Case Series and Differential Diagnosis. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 106019.	1.6	1

#	Article	IF	CITATIONS
811	Progranulin is located in secretory granules and vesicles of neutrophils and macrophages by immunogold electron microscopy. FASEB Journal, 2007, 21, A22.	0.5	1
812	Genetics of Vascular Dementia. Minerva Psichiatrica, 2010, 51, 9-25.	1.2	1
813	The Role of Microglia and Astrocytes in Amyloid Deposition in Alzheimer's Disease., 1995,, 108-127.		0
814	Authors' response to commentaries. Neurobiology of Aging, 1995, 16, 302-304.	3.1	0
815	Chapter 3 Structural Changes in the Aged Brain. Advances in Cell Aging and Gerontology, 1997, , 51-76.	0.1	0
816	Failure to Wean from a Ventilator Caused by ANNA-1 Seropositive Paraneoplastic Syndrome. European Neurology, 2003, 50, 112-114.	1.4	0
817	Neuropathology of Parkinson's disease. , 2005, , 575-585.		0
818	Frontotemporal Dementia. Blue Books of Neurology, 2010, 34, 397-416.	0.1	0
819	O1-07-01: Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggests a role for progranulin in successful aging., 2010, 6, S83-S83.		0
820	Quantitative characterization of brain \hat{l}^2 -amyloid using a joint PiB/FDG PET image histogram. , 2014, , .		0
821	Mixed Alzheimer's and Lewy-related Pathology Can Cause Corticobasal Syndrome with Visual Hallucinations. Internal Medicine, 2019, 58, 1813-1813.	0.7	0
822	Letter to the editor, "Movement disorders rounds: A case of missing pathology in a patient with LRRK2 Parkinson's disease†Parkinsonism and Related Disorders, 2020, 79, 130.	2.2	0
823	Coroninâ€1a: A novel microglial marker for use in paraffin embedded tissue. FASEB Journal, 2007, 21, A20.	0.5	0
824	Dual pathologies: Utility of TAR DNAâ€binding Protein 43 (TDPâ€43) Staining in Patients with Frontal and Temporal Lobe Abnormalities and Alzheimer disease. FASEB Journal, 2007, 21, .	0.5	0
825	Detection of TDPâ€43 in Alzheimer's disease and hippocampal sclerosis. FASEB Journal, 2007, 21, A25.	0.5	0
826	Coâ€existence of diffuse multisystem tauopathy and cerebral amyloid angiopathy in an elderly patient with dementia. FASEB Journal, 2008, 22, 707.10.	0.5	0
827	TDPâ€43 Neuronal Cytoplasmic Inclusions in the Amygdala of Patients with Advanced Alzheimer Disease. FASEB Journal, 2008, 22, 58.6.	0.5	0
828	Tau Negative FTLD Without Abnormal TDPâ€43 Immunoreactivity. FASEB Journal, 2008, 22, 707.13.	0.5	0

#	Article	lF	CITATIONS
829	Immunoelectron microscopy of TDPâ€43 in frontotemporal lobar degeneration, amyotrophic lateral sclerosis and Lewy body disease. FASEB Journal, 2008, 22, 58.12.	0.5	O
830	Neuropathology of parkinsonism. , 2013, , 239-257.		0
831	Exonic Re-Sequencing of the Chromosome 2q24.3 Parkinson's Disease Locus. PLoS ONE, 2015, 10, e0128586.	2.5	O
832	Pathological analysis of ErbB family and NRC-1 protein in progressive supranuclear palsy. The Journal of Kansai Medical University, 2019, 70, 13-17.	0.3	0
833	Neuronal intermediate filament inclusion disease may be incorrectly classified as a subtype of FTLD-FUS. Free Neuropathology, 2020, 1 , .	3.0	0
834	Mitochondrial genomic variation in dementia with Lewy bodies: association with disease risk and neuropathological measures. Acta Neuropathologica Communications, 2022, 10, .	5.2	0