
Joseph Bonaventura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10473073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature, 1996, 380, 221-226.	27.8	1,584
2	Blood Flow Regulation by <i>S</i> -Nitrosohemoglobin in the Physiological Oxygen Gradient. Science, 1997, 276, 2034-2037.	12.6	1,030
3	Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences. Proteins: Structure, Function and Bioinformatics, 1994, 19, 302-309.	2.6	379
4	Crystal structure of deoxygenated <i>limulus polyphemus</i> subunit II hemocyanin at 2.18 Ã resolution: Clues for a mechanism for allosteric regulation. Protein Science, 1993, 2, 597-619.	7.6	301
5	Ascaris haemoglobin is a nitric oxide-activated â€~deoxygenase'. Nature, 1999, 401, 497-502.	27.8	215
6	Human erythrocyte catalase: An improved method of isolation and a reevaluation of reported properties. Archives of Biochemistry and Biophysics, 1972, 150, 606-617.	3.0	172
7	NO is necessary and sufficient for egg activation at fertilization. Nature, 2000, 406, 633-636.	27.8	156
8	Barnacle cement: a polymerization model based on evolutionary concepts. Journal of Experimental Biology, 2009, 212, 3499-3510.	1.7	131
9	Functional Coupling of Oxygen Binding and Vasoactivity inS-Nitrosohemoglobin. Journal of Biological Chemistry, 2000, 275, 16738-16745.	3.4	128
10	The complete amino acid sequence of bovine liver catalase and the partial sequence of bovine erythrocyte catalase. Archives of Biochemistry and Biophysics, 1982, 214, 397-421.	3.0	120
11	Identification of Chloride-Binding Sites in Hemoglobin by Nuclear-Magnetic-Resonance Quadrupole-Relaxation Studies of Hemoglobin Digests. FEBS Journal, 1975, 55, 385-390.	0.2	91
12	Carbon monoxide binding by hemocyanins of Limulus polyphemus, Busycon carica, and Callinectes sapidus. Biochemistry, 1974, 13, 4784-4789.	2.5	82
13	S-Nitrosylation-induced Conformational Change in Blackfin Tuna Myoglobin. Journal of Biological Chemistry, 2007, 282, 19773-19780.	3.4	53
14	Quaternary structure of Limulus polyphemus hemocyanin. Biochemistry, 1983, 22, 5573-5583.	2.5	52
15	Oxygen binding by Limulus polyphemus hemocyanin: allosteric modulation by chloride ions. Biochemistry, 1977, 16, 3897-3902.	2.5	51
16	Subunit composition of a high molecular weight oligomer: Limulus polyphemus hemocyanin. Archives of Biochemistry and Biophysics, 1981, 210, 748-761.	3.0	49
17	Functional properties of carboxypeptidase-digested hemoglobins. Journal of Molecular Biology, 1974, 82, 499-511.	4.2	46
18	Oxygen Regulation of Tumor Perfusion by S -Nitrosohemoglobin Reveals a Pressor Activity of Nitric Oxide. Circulation Research, 2005, 96, 1119-1126.	4.5	42

#	Article	IF	CITATIONS
19	Metal ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanin: stoichiometry and structural and functional consequences of calcium(II), cadmium(II), zinc(II), and mercury(II) binding. Biochemistry, 1983, 22, 4713-4723.	2.5	39
20	Clinical implications of the loss of vasoactive nitric oxide during red blood cell storage. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19165-19166.	7.1	36
21	Nitric-oxide Synthase Forms N-NO-pterin and S-NO-Cys. Journal of Biological Chemistry, 2010, 285, 31581-31589.	3.4	36
22	Self-association and oxygen-binding characteristics of the isolated subunits of Limulus polyphemus hemocyanin. Archives of Biochemistry and Biophysics, 1984, 230, 238-249.	3.0	33
23	Effect of Heme and Non-Heme Ligands on Subunit Dissociation of Normal and Carboxypeptidase-digested Hemoglobin. Journal of Biological Chemistry, 1974, 249, 5689-5694.	3.4	33
24	Internal Electron Transfer between Hemes and Cu(II) Bound at Cysteine β93 Promotes Methemoglobin Reduction by Carbon Monoxide. Journal of Biological Chemistry, 1999, 274, 5499-5507.	3.4	26
25	S-Nitrosohemoglobin: an allosteric mediator of NO group function in mammalian vasculature. Free Radical Biology and Medicine, 2004, 37, 442-453.	2.9	26
26	ANIONIC CONTROL OF HEMOGLOBIN FUNCTION. , 1978, , 647-663.		21
27	NO and superoxide: Opposite ends of the seesaw in cardiac contractility. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16403-16404.	7.1	20
28	The partial amino acid sequence of human erythrocyte catalase. Archives of Biochemistry and Biophysics, 1982, 214, 422-424.	3.0	19
29	Invertebrate hemoglobins and nitric oxide: How heme pocket structure controls reactivity. Journal of Inorganic Biochemistry, 2005, 99, 903-911.	3.5	18
30	Nuclear magnetic resonance quadrupole relaxation study of chloride binding to hemoglobin abruzzo (α2Aβ2143 His → Arg). Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1974, 336, 403-406.	1.7	16
31	Parallel assay of oxygen equilibria of hemoglobin. Analytical Biochemistry, 2013, 441, 63-68.	2.4	16
32	Competition in Oxygen-Linked Anion Binding to Normal and Variant Human Hemoglobins. Hemoglobin, 1980, 4, 275-289.	0.8	9
33	Nitric Oxide, Invertebrates and Hemoglobin1. American Zoologist, 2001, 41, 346-359.	0.7	5
34	Nitric Oxide, Invertebrates and Hemoglobin. American Zoologist, 2001, 41, 346-359.	0.7	2
35	The Main Players: Hemoglobin and Myoglobin; Nitric Oxide and Oxygen. , 0, , 47-62. HEMOGLOBIN ENGINEERING: CONSEQUENCES OF ALTERATIONS AT FUNCTIONALLY SENSITIVE SITES		2
36	PARTICULARLY SUSCEPTIBLE TO CHEMICAL OR ENZYMATIC ATTACK11This work was supported in part by National Institutes of Health Research Grant HL-15460 and National Science Foundation Grant BMS 73 01695 and NATO Crant Number 866, locarb Benaventure is an Established Investigator of the		0

National Institutes of Health Research Grant HL-13460 and National Science Foundation Grant BMS
73-01695 and NATO Grant Number 866. Joseph Bonaventura is an Established Investigator of the
American Heart Association. George Lapennas is supported by Training Grant HL 07057-03..., 1978, ,
109-122.

#	Article	IF	CITATIONS
37	Effects of Anions and CO2 on the Dissociation of Liganded-Human Hemoglobin and Human Hemoglobin Variants. , 1982, , 257-261.		0