
Marcel Dickmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10473030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidating the Roles of Polyamide Layer Structural Properties in the Permeability–Selectivity Tradeoff Governing Aqueous Separations. ACS ES&T Engineering, 2022, 2, 1857-1870.	7.6	4
2	Templateâ€Mediated Control over Polymorphism in the Vaporâ€Assisted Formation of Zeolitic Imidazolate Framework Powders and Films. Angewandte Chemie - International Edition, 2021, 60, 7553-7558.	13.8	20
3	Templateâ€Mediated Control over Polymorphism in the Vaporâ€Assisted Formation of Zeolitic Imidazolate Framework Powders and Films. Angewandte Chemie, 2021, 133, 7631-7636.	2.0	2
4	Porosimetry for Thin Films of Metal–Organic Frameworks: A Comparison of Positron Annihilation Lifetime Spectroscopy and Adsorptionâ€Based Methods. Advanced Materials, 2021, 33, e2006993.	21.0	40
5	Chlorine-Resistant Epoxide-Based Membranes for Sustainable Water Desalination. Environmental Science and Technology Letters, 2021, 8, 818-824.	8.7	12
6	Aqueous Flow Reactor and Vapourâ€Assisted Synthesis of Aluminium Dicarboxylate Metal–Organic Frameworks with Tuneable Water Sorption Properties. Chemistry - A European Journal, 2020, 26, 10841-10848.	3.3	13
7	Thin film composite membrane compaction in high-pressure reverse osmosis. Journal of Membrane Science, 2020, 610, 118268.	8.2	73
8	Morphology of Thin Film Composite Membranes Explored by Small-Angle Neutron Scattering and Positron-Annihilation Lifetime Spectroscopy. Membranes, 2020, 10, 48.	3.0	11
9	Characterization of Enzymatically Synthesized Titania Thin Films Using Positron Annihilation Spectroscopy Reveals Lowâ€Cost Approach for Organic/Inorganic Photovoltaic Cells. Advanced Sustainable Systems, 2020, 4, 2000003.	5.3	2
10	Voids and vacancy-type defects in SiO2/GaN structures probed by monoenergetic positron beams. Journal of Applied Physics, 2020, 127, .	2.5	7
11	Solvent-Free Powder Synthesis and MOF-CVD Thin Films of the Large-Pore Metal–Organic Framework MAF-6. Chemistry of Materials, 2020, 32, 1784-1793.	6.7	62
12	Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation. Journal of Membrane Science, 2019, 576, 78-87.	8.2	75
13	Annealing Behavior of Vacancyâ€Type Defects in Mg―and Hâ€Implanted GaN Studied Using Monoenergetic Positron Beams. Physica Status Solidi (B): Basic Research, 2019, 256, 1900104.	1.5	27
14	Transferring bulk chemistry to interfacial synthesis of TFC-membranes to create chemically robust poly(epoxyether) films. Journal of Membrane Science, 2019, 582, 442-453.	8.2	24
15	Morphology and porous structure of standalone aromatic polyamide films as used in RO membranes – An exploration with SANS, PALS, and SEM. Journal of Membrane Science, 2019, 573, 167-176.	8.2	14
16	Reversible Optical Writing and Data Storage in an Anthraceneâ€Loaded Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 2423-2427.	13.8	102
17	Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams. Journal of Applied Physics, 2018, 123, .	2.5	21
18	Progress of the APEX experiment for creation of an electron-positron pair plasma. AIP Conference Proceedings, 2018, , .	0.4	9

MARCEL DICKMANN

#	Article	IF	CITATIONS
19	Carrier Trapping by Vacancyâ€Type Defects in Mgâ€Implanted GaN Studied Using Monoenergetic Positron Beams. Physica Status Solidi (B): Basic Research, 2018, 255, 1700521.	1.5	60
20	Real-scale chlorination at pH4 of BW30 TFC membranes and their physicochemical characterization. Journal of Membrane Science, 2018, 551, 123-135.	8.2	24
21	Increasing Membrane Permeability by Increasing the Polymer Crystallinity: The Unique Case of Polythiophenes. Macromolecules, 2018, 51, 9943-9950.	4.8	8
22	Annealing behavior of open spaces in AlON films studied by monoenergetic positron beams. Applied Physics Letters, 2018, 112, .	3.3	5
23	Positron Annihilation Studies on the Damp Heat Degradation of ZnO:Al Transparent Conductive Oxide Layers for CIGS Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1847-1851.	2.5	10
24	Evolution and role of vacancy clusters at grain boundaries of ZnO:Al during accelerated degradation of Cu(In,Ga)Se2 solar cells revealed by positron annihilation. Physical Review Materials, 2018, 2, .	2.4	7
25	Radio frequency elevator for a pulsed positron beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 821, 40-43.	1.6	6
26	Four-dimensional positron age-momentum correlation. New Journal of Physics, 2016, 18, 113030.	2.9	5
27	Demonstration of the monolithic interconnection on CIS solar cells by picosecond laser structuring on 30 by 30 cm ² modules. Progress in Photovoltaics: Research and Applications, 2015, 23, 1291-1304.	8.1	22
28	Investigation of the ablation of zinc oxide thin films onÂcopper–indium-selenide layers by ps laser pulses. Applied Physics A: Materials Science and Processing, 2011, 104, 387-393.	2.3	40
29	Application of induced laser ablation with ultra short pulse lasers for high speed thin film solar cell processing. , 2010, , .		2