Carlo Reggiani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10470221/publications.pdf

Version: 2024-02-01

63 papers 7,824 citations

126858 33 h-index 58 g-index

64 all docs

64
docs citations

64 times ranked 11979 citing authors

#	Article	IF	CITATIONS
1	Fiber Types in Mammalian Skeletal Muscles. Physiological Reviews, 2011, 91, 1447-1531.	13.1	2,100
2	Autophagy Is Required to Maintain Muscle Mass. Cell Metabolism, 2009, 10, 507-515.	7.2	1,554
3	Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nature Genetics, 2003, 35, 367-371.	9.4	469
4	Developmental myosins: expression patterns and functional significance. Skeletal Muscle, 2015, 5, 22.	1.9	352
5	ATP Consumption and Efficiency of Human Single Muscle Fibers with Different Myosin Isoform Composition. Biophysical Journal, 2000, 79, 945-961.	0.2	296
6	DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Communications, 2019, 10, 2576.	5 . 8	274
7	Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging. Cell Reports, 2017, 19, 2396-2409.	2.9	213
8	Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB Journal, 2009, 23, 3896-3905.	0.2	196
9	Mechanisms Modulating Skeletal Muscle Phenotype. , 2013, 3, 1645-1687.		191
10	Bupivacaine Myotoxicity Is Mediated by Mitochondria. Journal of Biological Chemistry, 2002, 277, 12221-12227.	1.6	154
11	Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrinâ€1. Journal of Physiology, 2007, 583, 767-784.	1.3	130
12	Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. Journal of Physiology, 2010, 588, 353-364.	1.3	114
13	Oxidative stress by monoamine oxidases is causally involved in myofiber damage in muscular dystrophy. Human Molecular Genetics, 2010, 19, 4207-4215.	1.4	108
14	Microgenomic Analysis in Skeletal Muscle: Expression Signatures of Individual Fast and Slow Myofibers. PLoS ONE, 2011, 6, e16807.	1.1	91
15	Fast fibres in a large animal: fibre types, contractile properties and myosin expression in pig skeletal muscles. Journal of Experimental Biology, 2004, 207, 1875-1886.	0.8	81
16	NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. Journal of Cell Science, 2006, 119, 1604-1611.	1.2	81
17	Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Human Molecular Genetics, 2008, 17, 3686-3696.	1.4	75
18	FoxOâ€dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. Journal of Physiology, 2017, 595, 1143-1158.	1.3	75

#	Article	IF	CITATIONS
19	The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms. Journal of Physiology, 2004, 554, 335-352.	1.3	73
20	Fiber types in canine muscles: myosin isoform expression and functional characterization. American Journal of Physiology - Cell Physiology, 2007, 292, C1915-C1926.	2.1	73
21	Molecular Mechanisms of Skeletal Muscle Hypertrophy. Journal of Neuromuscular Diseases, 2021, 8, 169-183.	1.1	64
22	The role of satellite cells in muscle hypertrophy. Journal of Muscle Research and Cell Motility, 2014, 35, 3-10.	0.9	61
23	Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Reports, 2019, 26, 3784-3797.e8.	2.9	55
24	Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. Journal of Physiology, 2021, 599, 3037-3061.	1.3	55
25	Alterations of Extracellular Matrix Mechanical Properties Contribute to Age-Related Functional Impairment of Human Skeletal Muscles. International Journal of Molecular Sciences, 2020, 21, 3992.	1.8	54
26	Imaging and elasticity measurements of the sarcolemma of fully differentiated skeletal muscle fibres. Microscopy Research and Technique, 2005, 67, 27-35.	1,2	53
27	A Mutation in the <i> CASQ1 < /i > Gene Causes a Vacuolar Myopathy with Accumulation of Sarcoplasmic Reticulum Protein Aggregates. Human Mutation, 2014, 35, $1163-1170$.</i>	1.1	53
28	Identification and characterization of three novel mutations in the <i>CASQ1 < /i>gene in four patients with tubular aggregate myopathy. Human Mutation, 2017, 38, 1761-1773.</i>	1.1	51
29	Expression of the Ryanodine Receptor Type 3 in Skeletal Muscle A New Partner in Excitation-Contraction Coupling?. Trends in Cardiovascular Medicine, 1999, 9, 54-61.	2.3	49
30	Increased phosphorylation of myosin light chain associated with slow-to-fast transition in rat soleus. American Journal of Physiology - Cell Physiology, 2003, 285, C575-C583.	2.1	43
31	Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy. Journal of Applied Physiology, 2010, 108, 105-111.	1.2	42
32	Masticatory myosin unveiled: first determination of contractile parameters of muscle fibers from carnivore jaw muscles. American Journal of Physiology - Cell Physiology, 2008, 295, C1535-C1542.	2.1	39
33	Contractile properties and myosin heavy chain isoform composition in single fibre of human laryngeal muscles. Journal of Muscle Research and Cell Motility, 2002, 23, 187-195.	0.9	38
34	Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. FEBS Journal, 2005, 272, 5771-5785.	2.2	38
35	AQP4-Dependent Water Transport Plays a Functional Role in Exercise-Induced Skeletal Muscle Adaptations. PLoS ONE, 2013, 8, e58712.	1.1	32
36	Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species. Annals of Anatomy, 2016, 207, 9-20.	1.0	30

#	Article	IF	CITATIONS
37	Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. European Journal of Translational Myology, 2020, 30, 9311.	0.8	30
38	Fibre and extracellular matrix contributions to passive forces in human skeletal muscles: An experimental based constitutive law for numerical modelling of the passive element in the classical Hill-type three element model. PLoS ONE, 2019, 14, e0224232.	1.1	29
39	Fiber type diversity in skeletal muscle explored by mass spectrometry-based single fiber proteomics. Histology and Histopathology, 2020, 35, 239-246.	0.5	28
40	RyR isoforms and fibre type-specific expression of proteins controlling intracellular calcium concentration in skeletal muscles. Journal of Muscle Research and Cell Motility, 2006, 27, 327-335.	0.9	25
41	From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1833-1843.	1.4	24
42	Age Dependent Modification of the Metabolic Profile of the Tibialis Anterior Muscle Fibers in C57BL/6J Mice. International Journal of Molecular Sciences, 2020, 21, 3923.	1.8	22
43	Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. , 2022, 1, .		22
44	Resveratrol treatment reduces the appearance of tubular aggregates and improves the resistance to fatigue in aging mice skeletal muscles. Experimental Gerontology, 2018, 111, 170-179.	1.2	21
45	Skeletal Muscle Fiber Size and Gene Expression in the Oldest-Old With Differing Degrees of Mobility. Frontiers in Physiology, 2019, 10, 313.	1.3	18
46	Latissimus Dorsi Fine Needle Muscle Biopsy: A Novel and Efficient Approach to Study Proximal Muscles of Upper Limbs. Journal of Surgical Research, 2010, 164, e257-e263.	0.8	16
47	Caffeine as a tool to investigate sarcoplasmic reticulum and intracellular calcium dynamics in human skeletal muscles. Journal of Muscle Research and Cell Motility, 2021, 42, 281-289.	0.9	16
48	Parvalbumin affects skeletal muscle trophism through modulation of mitochondrial calcium uptake. Cell Reports, 2021, 35, 109087.	2.9	16
49	Myosin Isoforms and Contractile Properties of Single Fibers of Human Latissimus Dorsi Muscle. BioMed Research International, 2013, 2013, 1-7.	0.9	15
50	Are muscle fibres of body builders intrinsically weaker? A comparison with single fibres of agedâ€matched controls. Acta Physiologica, 2021, 231, e13557.	1.8	13
51	Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition. Nutrients, 2016, 8, 331.	1.7	12
52	Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits. Biochemical and Biophysical Research Communications, 2005, 337, 195-200.	1.0	11
53	Age-dependent neuromuscular impairment in prion protein knockout mice. Muscle and Nerve, 2016, 53, 269-279.	1.0	10
54	Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. European Journal of Translational Myology, 2020, 30, 8982.	0.8	8

#	Article	IF	CITATIONS
55	A controversial issue: Can mitochondria modulate cytosolic calcium and contraction of skeletal muscle fibers?. Journal of General Physiology, 2022, 154, .	0.9	8
56	Myosin Ii: Sarcomeric Myosins, The Motors Of Contraction In Cardiac And Skeletal Muscles. , 2008, , 125-169.		4
57	Calcium handling in muscle fibres of mice and men: evolutionary adaptation in different species to optimize performance and save energy. Journal of Physiology, 2014, 592, 1173-1174.	1.3	4
58	Changes in the fraction of strongly attached cross bridges in mouse atrophic and hypertrophic muscles as revealed by continuous wave electron paramagnetic resonance. American Journal of Physiology - Cell Physiology, 2019, 316, C722-C730.	2.1	4
59	The effect of leg preference on mechanical efficiency during single-leg extension exercise. Journal of Applied Physiology, 2021, 131, 553-565.	1.2	4
60	Age-dependent variations in the expression of myosin isoforms and myogenic factors during the involution of the proximal sesamoidean ligament of sheep. Research in Veterinary Science, 2019, 124, 270-279.	0.9	3
61	Skeletal Muscle Fiber Types. , 2012, , 855-867.		2
62	Letter to the editor: Comments on Stuart et al. (2016): "Myosin content of individual human muscle fibers isolated by laser capture microdissection― American Journal of Physiology - Cell Physiology, 2016, 311, C1048-C1049.	2.1	2
63	Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. European Journal of Translational Myology, 0, , .	0.8	O