Rasmus Astrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10467617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data. Canadian Journal of Forest Research, 2021, 51, 1472-1485.	1.7	9
2	Timber volume estimation based on airborne laser scanning — comparing the use of national forest inventory and forest management inventory data. Annals of Forest Science, 2021, 78, 1.	2.0	12
3	Large scale mapping of forest attributes using heterogeneous sets of airborne laser scanning and National Forest Inventory data. Forest Ecosystems, 2021, 8, 65.	3.1	25
4	A century of National Forest Inventory in Norway – informing past, present, and future decisions. Forest Ecosystems, 2020, 7, 46.	3.1	51
5	Forest information at multiple scales: development, evaluation and application of the Norwegian forest resources map SR16. Scandinavian Journal of Forest Research, 2019, 34, 484-496.	1.4	30
6	Assessing Harvested Sites in a Forested Boreal Mountain Catchment through Global Forest Watch. Remote Sensing, 2019, 11, 543.	4.0	12
7	Cooling aerosols and changes in albedo counteract warming from CO2 and black carbon from forest bioenergy in Norway. Scientific Reports, 2018, 8, 3299.	3.3	18
8	Remote sensing and forest inventories in Nordic countries – roadmap for the future. Scandinavian Journal of Forest Research, 2018, 33, 397-412.	1.4	111
9	Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Computers and Electronics in Agriculture, 2018, 145, 217-225.	7.7	146
10	An operational UAV-based approach for stand-level assessment of soil disturbance after forest harvesting. Scandinavian Journal of Forest Research, 2018, 33, 387-396.	1.4	22
11	An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data. Biogeosciences, 2018, 15, 399-412.	3.3	13
12	Tree-Stump Detection, Segmentation, Classification, and Measurement Using Unmanned Aerial Vehicle (UAV) Imagery. Forests, 2018, 9, 102.	2.1	50
13	Unit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry data. Remote Sensing of Environment, 2018, 212, 199-211.	11.0	33
14	Digital aerial photogrammetry can efficiently support large-area forest inventories in Norway. Forestry, 2017, 90, 710-718.	2.3	32
15	Post-stratified change estimation for large-area forest biomass using repeated ALS strip sampling. Canadian Journal of Forest Research, 2017, 47, 839-847.	1.7	14
16	Kriging prediction of stand-level forest information using mobile laser scanning data adjusted for nondetection. Canadian Journal of Forest Research, 2017, 47, 1257-1265.	1.7	6
17	Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests. Remote Sensing, 2016, 8, 554.	4.0	39
18	Carbonâ€equivalent metrics for albedo changes in land management contexts: relevance of the time dimension. Ecological Applications, 2016, 26, 1868-1880.	3.8	30

RASMUS ASTRUP

#	Article	IF	CITATIONS
19	Comparison of carbon estimation methods for European forests. Forest Ecology and Management, 2016, 361, 397-420.	3.2	106
20	Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume. Remote Sensing of Environment, 2016, 173, 274-281.	11.0	51
21	Measuring wheel ruts with close-range photogrammetry. Forestry, 2016, 89, 383-391.	2.3	34
22	Forest Parameter Prediction Using an Image-Based Point Cloud: A Comparison of Semi-ITC with ABA. Forests, 2015, 6, 4059-4071.	2.1	31
23	Empirical models of albedo transitions in managed boreal forests: analysis of performance and transportability. Canadian Journal of Forest Research, 2015, 45, 195-206.	1.7	5
24	Temporal Stability of X-Band Single-Pass InSAR Heights in a Spruce Forest: Effects of Acquisition Properties and Season. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 1607-1614.	6.3	27
25	Estimating Single-Tree Crown Biomass of Norway Spruce by Airborne Laser Scanning: A Comparison of Methods with and without the Use of Terrestrial Laser Scanning to Obtain the Ground Reference Data. Forests, 2014, 5, 384-403.	2.1	37
26	Tree Root System Characterization and Volume Estimation by Terrestrial Laser Scanning and Quantitative Structure Modeling. Forests, 2014, 5, 3274-3294.	2.1	25
27	Estimating Soil Displacement from Timber Extraction Trails in Steep Terrain: Application of an Unmanned Aircraft for 3D Modelling. Forests, 2014, 5, 1212-1223.	2.1	42
28	Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance. Tree Physiology, 2014, 34, 1334-1347.	3.1	12
29	Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway. Global Change Biology, 2014, 20, 607-621.	9.5	51
30	Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Canadian Journal of Forest Research, 2014, 44, 666-676.	1.7	68
31	Comparison of four types of 3D data for timber volume estimation. Remote Sensing of Environment, 2014, 155, 325-333.	11.0	103
32	Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote Sensing of Environment, 2013, 139, 60-67.	11.0	104
33	Stand recovery and self-organization following large-scale mountain pine beetle induced canopy mortality in northern forests. Forest Ecology and Management, 2013, 310, 300-311.	3.2	31
34	Competitive interactions across a soil fertility gradient in a multispecies forest. Journal of Ecology, 2013, 101, 806-818.	4.0	64
35	Browsing of sallow (Salix caprea L.) and rowan (Sorbus aucuparia L.) in the context of life history strategies: a literature review. European Journal of Forest Research, 2013, 132, 399-409.	2.5	27
36	Empirical models of monthly and annual albedo in managed boreal forests of interior Norway. Climatic Change, 2013, 120, 183-196.	3.6	27

RASMUS ASTRUP

#	Article	IF	CITATIONS
37	Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features. Scandinavian Journal of Forest Research, 2013, 28, 456-469.	1.4	48
38	Comparison of Forest Attributes Derived from Two Terrestrial Lidar Systems. Photogrammetric Engineering and Remote Sensing, 2013, 79, 245-257.	0.6	16
39	Detection of Forest Clear-Cuts with Shuttle Radar Topography Mission (SRTM) and Tandem-X InSAR Data. Remote Sensing, 2013, 5, 5449-5462.	4.0	21
40	Empirical harvest models and their use in regional business-as-usual scenarios of timber supply and carbon stock development. Scandinavian Journal of Forest Research, 2012, 27, 379-392.	1.4	33
41	Multiple resource limitation and ontogeny combined: a growth rate comparison of three co-occurring conifers. Canadian Journal of Forest Research, 2012, 42, 99-110.	1.7	18
42	Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sensing of Environment, 2012, 123, 443-456.	11.0	102
43	Small area estimation of forest attributes in the Norwegian National Forest Inventory. European Journal of Forest Research, 2012, 131, 1255-1267.	2.5	95
44	Moose Alces alces habitat use at multiple temporal scales in a humanâ€∎ltered landscape. Wildlife Biology, 2011, 17, 44-54.	1.4	114
45	Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sensing of Environment, 2010, 114, 2353-2360.	11.0	102
46	Deriving forest monitoring variables from X-band InSAR SRTM height. Canadian Journal of Remote Sensing, 2010, 36, 68-79.	2.4	36
47	Finding the appropriate level of complexity for a simulation model: An example with a forest growth model. Forest Ecology and Management, 2008, 256, 1659-1665.	3.2	33
48	Recruitment limitation in forests: Lessons from an unprecedented mountain pine beetle epidemic. Forest Ecology and Management, 2008, 256, 1743-1750.	3.2	70
49	Prediction and model-assisted estimation of diameter distributions using Norwegian national forest inventory and airborne laser scanning data. Canadian Journal of Forest Research, 0, , .	1.7	6
50	Mapping wheel-ruts from timber harvesting operations using deep learning techniques in drone imagery. Forestry, 0, , .	2.3	2