
Riki Kurokawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10465486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A CBP Integrator Complex Mediates Transcriptional Activation and AP-1 Inhibition by Nuclear Receptors. Cell, 1996, 85, 403-414.	28.9	2,078
2	Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature, 1995, 377, 397-404.	27.8	1,917
3	Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-Î ³ . Nature, 1998, 395, 137-143.	27.8	1,818
4	Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 2001, 413, 739-743.	27.8	1,156
5	Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature, 2008, 454, 126-130.	27.8	904
6	Transcription Factor-Specific Requirements for Coactivators and Their Acetyltransferase Functions. Science, 1998, 279, 703-707.	12.6	602
7	Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature, 1995, 377, 451-454.	27.8	554
8	Combinatorial Roles of the Nuclear Receptor Corepressor in Transcription and Development. Cell, 2000, 102, 753-763.	28.9	475
9	Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature, 1994, 371, 528-531.	27.8	426
10	Transcriptional Activation by NF-κB Requires Multiple Coactivators. Molecular and Cellular Biology, 1999, 19, 6367-6378.	2.3	413
11	Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature, 1998, 395, 199-202.	27.8	325
12	Signal-specific co-activator domain requirements for Pit-1 activation. Nature, 1998, 395, 301-306.	27.8	273
13	Differential Use of CREB Binding Protein-Coactivator Complexes. Science, 1998, 279, 700-703.	12.6	216
14	Regulation of Telomere Length by G-Quadruplex Telomere DNA- and TERRA-Binding Protein TLS/FUS. Chemistry and Biology, 2013, 20, 341-350.	6.0	143
15	Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochemical and Biophysical Research Communications, 2014, 444, 682-686.	2.1	98
16	Identification of Ewing's sarcoma protein as a Gâ€quadruplex DNA―and RNAâ€binding protein. FEBS Journa 2011, 278, 988-998.	l, 4.7	71
17	Histone Methylation and STATâ€3 Differentially Regulate Interleukinâ€6–Induced Matrix Metalloproteinase Gene Activation in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis and Rheumatology, 2016, 68, 1111-1123.	5.6	70
18	Transcriptional regulation through noncoding RNAs and epigenetic modifications. RNA Biology, 2009, 6, 233-236.	3.1	69

Riki Kurokawa

#	Article	IF	CITATIONS
19	Novel homeodomainâ€interacting protein kinase family member, HIPK4, phosphorylates human p53 at serine 9. FEBS Letters, 2007, 581, 5649-5657.	2.8	46
20	Promoter-Associated Noncoding RNA from the CCND1 Promoter. Methods in Molecular Biology, 2012, 809, 609-622.	0.9	46
21	Long Noncoding RNA as a Regulator for Transcription. Progress in Molecular and Subcellular Biology, 2011, 51, 29-41.	1.6	39
22	TLS and PRMT1 synergistically coactivate transcription at the survivin promoter through TLS arginine methylation. Biochemical and Biophysical Research Communications, 2011, 404, 991-996.	2.1	38
23	Promoter-Associated Long Noncoding RNAs Repress Transcription Through a RNA Binding Protein TLS. Advances in Experimental Medicine and Biology, 2011, 722, 196-208.	1.6	38
24	Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation. Cell and Bioscience, 2012, 2, 1.	4.8	38
25	Loop Lengths of G-Quadruplex Structures Affect the G-Quadruplex DNA Binding Selectivity of the RGG Motif in Ewing's Sarcoma. Biochemistry, 2011, 50, 5369-5378.	2.5	36
26	Plastic roles of phenylalanine and tyrosine residues of TLS/FUS in complex formation with the G-quadruplexes of telomeric DNA and TERRA. Scientific Reports, 2018, 8, 2864.	3.3	25
27	Long noncoding RNA pncRNA-D reduces cyclin D1 gene expression and arrests cell cycle through RNA m6A modification. Journal of Biological Chemistry, 2020, 295, 5626-5639.	3.4	24
28	Arginine methylation of translocated in liposarcoma (TLS) inhibits its binding to long noncoding RNA, abrogating TLS-mediated repression of CBP/p300 activity. Journal of Biological Chemistry, 2018, 293, 10937-10948.	3.4	21
29	The binding specificity of Translocated in LipoSarcoma/FUsed in Sarcoma with IncRNA transcribed from the promoter region of cyclin D1. Cell and Bioscience, 2016, 6, 4.	4.8	14
30	Non-coding RNA suppresses FUS aggregation caused by mechanistic shear stress on pipetting in a sequence-dependent manner. Scientific Reports, 2021, 11, 9523.	3.3	11
31	Altered gene expression profiles of histone lysine methyltransferases and demethylases in rheumatoid arthritis synovial fibroblasts. Clinical and Experimental Rheumatology, 2018, 36, 314-316.	0.8	11
32	RNA sequence and length contribute to RNA-induced conformational change of TLS/FUS. Scientific Reports, 2020, 10, 2629.	3.3	9
33	Direct visualization of the conformational change of FUS/TLS upon binding to promoter-associated non-coding RNA. Chemical Communications, 2020, 56, 9134-9137.	4.1	6
34	m6A Modified Short RNA Fragments Inhibit Cytoplasmic TLS/FUS Aggregation Induced by Hyperosmotic Stress. International Journal of Molecular Sciences, 2021, 22, 11014.	4.1	6
35	Identification of RNA Binding Specificity for the TET-family Proteins. Nucleic Acids Symposium Series, 2008, 52, 213-214.	0.3	5
36	Development of a mouse monoclonal antibody for the detection of asymmetric dimethylarginine of Translocated in LipoSarcoma/FUsed in Sarcoma and its application in analyzing methylated TLS. Cell and Bioscience, 2014, 4, 77.	4.8	4

#	Article	IF	CITATIONS
37	CREB Binding Protein—Coactivator Complexes. , 2000, , 395-403.		0
38	Nuclear Receptor Coactivators. , 2003, , 25-28.		0
39	Generation of Functional Long Noncoding RNA Through Transcription and Natural Selection. , 2012, , 151-174.		0