Chanchal Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10464589/publications.pdf

Version: 2024-02-01

257450 477307 12,021 27 24 29 citations g-index h-index papers 30 30 30 17948 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 2009, 325, 834-840.	12.6	3,883
2	Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell, 2006, 127, 635-648.	28.9	3,201
3	Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signaling, 2010, 3, ra3.	3.6	1,319
4	The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biology, 2006, 7, R80.	9.6	598
5	Comparative Proteomic Phenotyping of Cell Lines and Primary Cells to Assess Preservation of Cell Type-specific Functions. Molecular and Cellular Proteomics, 2009, 8, 443-450.	3.8	426
6	Phosphoproteome Analysis of E. coli Reveals Evolutionary Conservation of Bacterial Ser/Thr/Tyr Phosphorylation. Molecular and Cellular Proteomics, 2008, 7, 299-307.	3.8	385
7	The Serine/Threonine/Tyrosine Phosphoproteome of the Model Bacterium Bacillus subtilis. Molecular and Cellular Proteomics, 2007, 6, 697-707.	3.8	359
8	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins. Molecular and Cellular Proteomics, 2008, 7, 672-683.	3.8	261
9	Proteome Differences between Brown and White Fat Mitochondria Reveal Specialized Metabolic Functions. Cell Metabolism, 2009, 10, 324-335.	16.2	205
10	Quantitative proteomic analysis of single pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18902-18907.	7.1	199
11	Integrated Analysis of the Cerebrospinal Fluid Peptidome and Proteome. Journal of Proteome Research, 2008, 7, 386-399.	3.7	162
12	Bioinformatics analysis of mass spectrometryâ€based proteomics data sets. FEBS Letters, 2009, 583, 1703-1712.	2.8	147
13	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of <i>Bacillus subtilis</i> . Journal of Proteome Research, 2010, 9, 3638-3646.	3.7	108
14	Artificial intelligence for proteomics and biomarker discovery. Cell Systems, 2021, 12, 759-770.	6.2	106
15	In-depth Analysis of the Adipocyte Proteome by Mass Spectrometry and Bioinformatics. Molecular and Cellular Proteomics, 2007, 6, 1257-1273.	3.8	101
16	Combined Use of RNAi and Quantitative Proteomics to Study Gene Function in Drosophila. Molecular Cell, 2008, 31, 762-772.	9.7	93
17	Analysis of the Mouse Liver Proteome Using Advanced Mass Spectrometry. Journal of Proteome Research, 2007, 6, 2963-2972.	3.7	83
18	Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nature Metabolism, 2019, 1, 445-459.	11.9	72

#	Article	lF	CITATION
19	MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes. Nucleic Acids Research, 2007, 35, D771-D779.	14.5	69
20	Combination of Chemical Genetics and Phosphoproteomics for Kinase Signaling Analysis Enables Confident Identification of Cellular Downstream Targets. Molecular and Cellular Proteomics, 2012, 11, O111.012351.	3.8	50
21	Metabolomic Profile in HFpEF vs HFrEF Patients. Journal of Cardiac Failure, 2020, 26, 1050-1059.	1.7	46
22	Intra- and inter-individual metabolic profiling highlights carnitine and lysophosphatidylcholine pathways as key molecular defects in type 2 diabetes. Scientific Reports, 2019, 9, 9653.	3.3	32
23	Quantitative Analysis of Kinase-Proximal Signaling in Lipopolysaccharide-Induced Innate Immune Response. Journal of Proteome Research, 2010, 9, 2539-2549.	3.7	31
24	A Physiology-Based Model of Bile Acid Distribution and Metabolism Under Healthy and Pathologic Conditions in Human Beings. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 149-170.	4.5	30
25	A Multi-Omics Approach to Liver Diseases: Integration of Single Nuclei Transcriptomics with Proteomics and HiCap Bulk Data in Human Liver. OMICS A Journal of Integrative Biology, 2020, 24, 180-194.	2.0	26
26	rs953413 Regulates Polyunsaturated Fatty Acid Metabolism by Modulating ELOVL2 Expression. IScience, 2020, 23, 100808.	4.1	19
27	Integration of whole-body [18F]FDG PET/MRI with non-targeted metabolomics can provide new insights on tissue-specific insulin resistance in type 2 diabetes. Scientific Reports, 2020, 10, 8343.	3.3	5