Catrine Johansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10463704/publications.pdf

Version: 2024-02-01

19	1,772	15	19
papers	citations	h-index	g-index
19	19	19	2546
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recognition of Dimethylarginine Analogues by Tandem Tudor Domain Protein Spindlin1. Molecules, 2022, 27, 983.	3.8	2
2	Lysine Demethylase 5A Is Required for MYC-Driven Transcription in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 370-387.	5.0	19
3	First-in-Class Inhibitors of the Ribosomal Oxygenase MINA53. Journal of Medicinal Chemistry, 2021, 64, 17031-17050.	6.4	7
4	Inhibition of Histone H3K27 Demethylases Inactivates Brachyury (TBXT) and Promotes Chordoma Cell Death. Cancer Research, 2020, 80, 4540-4551.	0.9	33
5	Potent and Selective KDM5 Inhibitor Stops Cellular Demethylation of H3K4me3 at Transcription Start Sites and Proliferation of MM1S Myeloma Cells. Cell Chemical Biology, 2017, 24, 371-380.	5.2	111
6	Studies on the Interaction of the Histone Demethylase KDM5B with Tricarboxylic Acid Cycle Intermediates. Journal of Molecular Biology, 2017, 429, 2895-2906.	4.2	29
7	Advances and challenges in understanding histone demethylase biology. Current Opinion in Chemical Biology, 2016, 33, 151-159.	6.1	28
8	Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nature Chemical Biology, 2016, 12, 539-545.	8.0	155
9	8-Substituted Pyrido[3,4- <i>d</i>)pyrimidin-4(3 <i>H</i>)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 1388-1409.	6.4	83
10	Human UTY(KDM6C) Is a Male-specific NÏμ-Methyl Lysyl Demethylase. Journal of Biological Chemistry, 2014, 289, 18302-18313.	3.4	166
11	The roles of Jumonji-type oxygenases in human disease. Epigenomics, 2014, 6, 89-120.	2.1	141
12	An unusual mode of iron–sulfur-cluster coordination in a teleost glutaredoxin. Biochemical and Biophysical Research Communications, 2013, 436, 491-496.	2.1	15
13	The crystal structure of human GLRX5: iron–sulfur cluster co-ordination, tetrameric assembly and monomer activity. Biochemical Journal, 2011, 433, 303-311.	3.7	115
14	Reversible Sequestration of Active Site Cysteines in a 2Fe-2S-bridged Dimer Provides a Mechanism for Glutaredoxin 2 Regulation in Human Mitochondria. Journal of Biological Chemistry, 2007, 282, 3077-3082.	3.4	129
15	Oxidation and S-Nitrosylation of Cysteines in Human Cytosolic and Mitochondrial Glutaredoxins. Journal of Biological Chemistry, 2007, 282, 14428-14436.	3.4	94
16	Redox properties and evolution of human glutaredoxins. Proteins: Structure, Function and Bioinformatics, 2007, 68, 879-892.	2.6	48
17	Human Mitochondrial Glutaredoxin Reduces S-Glutathionylated Proteins with High Affinity Accepting Electrons from Either Glutathione or Thioredoxin Reductase. Journal of Biological Chemistry, 2004, 279, 7537-7543.	3.4	261
18	Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency. Biochemical and Biophysical Research Communications, 2002, 295, 1046-1051.	2.1	52

#	Article	IF	CITATIONS
19	Cloning and Expression of a Novel Human Glutaredoxin (Grx2) with Mitochondrial and Nuclear Isoforms. Journal of Biological Chemistry, 2001, 276, 26269-26275.	3.4	284