Widmar Tanner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10463644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transmembrane voltage: Potential to induce lateral microdomains. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 806-811.	2.4	19
2	Membrane Microdomains, Rafts, and Detergent-Resistant Membranes in Plants and Fungi. Annual Review of Plant Biology, 2013, 64, 501-529.	18.7	152
3	More than 40 years of glycobiology in Regensburg. Biochemical and Biophysical Research Communications, 2012, 425, 578-582.	2.1	0
4	Distribution of Cortical Endoplasmic Reticulum Determines Positioning of Endocytic Events in Yeast Plasma Membrane. PLoS ONE, 2012, 7, e35132.	2.5	37
5	In Plant and Animal Cells, Detergent-Resistant Membranes Do Not Define Functional Membrane Rafts. Plant Cell, 2011, 23, 1191-1193.	6.6	50
6	The lateral compartmentation of the yeast plasma membrane. Yeast, 2010, 27, 473-478.	1.7	77
7	C Terminus of Nce102 Determines the Structure and Function of Microdomains in the Saccharomyces cerevisiae Plasma Membrane. Eukaryotic Cell, 2010, 9, 1184-1192.	3.4	41
8	Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. Journal of Cell Science, 2009, 122, 2887-2894.	2.0	145
9	Plasma membrane microdomains regulate turnover of transport proteins in yeast. Journal of Cell Biology, 2008, 183, 1075-1088.	5.2	207
10	Chapter 5 A Botanist Going Astray: 77 Semesters of Studying Membrane Transport and Protein Glycosylation. Comprehensive Chemical Kinetics, 2008, 46, 335-396.	2.3	0
11	In 75 semesters, from mannan and dolichol to Pir proteins and membrane compartmentation: personal recollections. Yeast, 2007, 24, 221-228.	1.7	1
12	Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO Journal, 2007, 26, 1-8.	7.8	235
13	Protein Glycosylation, Conserved from Yeast to Man: A Model Organism Helps Elucidate Congenital Human Diseases. Angewandte Chemie - International Edition, 2006, 45, 6802-6818.	13.8	275
14	Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed in Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 945-953.	3.4	59
15	Pir Proteins of Saccharomyces cerevisiae Are Attached to β-1,3-Glucan by a New Protein-Carbohydrate Linkage. Journal of Biological Chemistry, 2006, 281, 11523-11529.	3.4	149
16	Differential effect of phosphatidylethanolamine depletion on raft proteins. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 87-95.	2.6	34
17	Extracellular Invertase Is an Essential Component of Cytokinin-Mediated Delay of Senescence[W]. Plant Cell, 2004, 16, 1276-1287.	6.6	316
18	Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. Journal of Cell Science, 2004, 117, 6031-6041.	2.0	141

#	Article	IF	CITATIONS
19	Scw10p, a cell-wall glucanase/transglucosidase important for cell-wall stability in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2004, 150, 3197-3208.	1.8	44
20	Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14126-14131.	7.1	146
21	Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Molecular Microbiology, 2004, 52, 1413-1425.	2.5	49
22	O-mannosyl glycans: from yeast to novel associations with human disease. Current Opinion in Structural Biology, 2003, 13, 621-630.	5.7	154
23	O â€Mannosylation precedes and potentially controls the N â€glycosylation of a yeast cell wall glycoprotein. EMBO Reports, 2003, 4, 628-632.	4.5	75
24	Getting to the heart of transpiration in plants. Nature, 2003, 424, 613-613.	27.8	2
25	Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells. Molecular Biology of the Cell, 2003, 14, 4427-4436.	2.1	264
26	Phosphatidyl ethanolamine is essential for targeting the arginine transporter Can1p to the plasma membrane of yeast. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 9-13.	2.6	37
27	Do drought-hardened plants suffer from fever?. Trends in Plant Science, 2001, 6, 507.	8.8	7
28	Construction of phosphatidylethanolamine-less strain ofSaccharomyces cerevisiae. Effect on amino acid transport. Yeast, 2001, 18, 251-260.	1.7	31
29	The chlorella hexose/H+-symporters. International Review of Cytology, 2000, 200, 101-141.	6.2	39
30	Properties of a reconstituted eukaryotic hexose/proton symporter solubilized by structurally related non-ionic detergents: specific requirement of phosphatidylcholine for permease stability. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1463, 407-418.	2.6	17
31	The C-terminal tetrapeptide HWFW of theChlorellaHUP1 hexose/H+-symporter is essential for full activity and an α-helical structure of the C-terminus. FEBS Letters, 2000, 468, 225-230.	2.8	6
32	O-Glycosylation of Axl2/Bud10p by Pmt4p Is Required for Its Stability, Localization, and Function in Daughter Cells. Journal of Cell Biology, 1999, 145, 1177-1188.	5.2	65
33	Expression of eukaryotic plasma membrane transporter HUP1 fromChlorella kessleriinEscherichia coli. FEMS Microbiology Letters, 1999, 174, 65-72.	1.8	6
34	Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir) Tj ETQq0 0 (0 rgBT /Ov	erlock 10 Tf 5
35	Protein O-mannosylation. Biochimica Et Biophysica Acta - General Subjects, 1999, 1426, 297-307.	2.4	262

36	Deletion of New Covalently Linked Cell Wall Glycoproteins Alters the Electrophoretic Mobility of Phosphorylated Wall Components of Saccharomyces cerevisiae. Journal of Bacteriology, 1999, 181, 3076-3086.	2.2	71	
----	---	-----	----	--

#	Article	IF	CITATIONS
37	Post-translational fate of CAN1 permease of Saccharomyces cerevisiae. , 1998, 14, 215-224.		18
38	Alteration of Substrate Affinities and Specificities of theChlorella Hexose/H+ Symporters by Mutations and Construction of Chimeras. Journal of Biological Chemistry, 1998, 273, 11456-11462.	3.4	30
39	New Potential Cell Wall Glucanases of <i>Saccharomyces cerevisiae</i> and Their Involvement in Mating. Journal of Bacteriology, 1998, 180, 5030-5037.	2.2	188
40	Protein-O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology, 1997, 7, 481-486.	2.5	152
41	Characterization of Two New Genes Down-regulated by α-factor. Yeast, 1997, 13, 809-817.	1.7	9
42	Specific Labelling of Cell Wall Proteins by Biotinylation. Identification of Four Covalently Linked O-mannosylated Proteins ofSaccharomyces cerevisiae. , 1997, 13, 1145-1154.		189
43	Importance of the first external loop for substrate recognition as revealed by chimericChlorellamonosaccharide/H+symporters. FEBS Letters, 1996, 381, 127-130.	2.8	15
44	Purification of the Chlorella HUP1 hexose-proton symporter to homogeneity and its reconstitution in vitro. Plant Journal, 1996, 10, 1045-1053.	5.7	18
45	PMT3 andPMT4, two new members of the protein-O-mannosyltransferase gene family ofSaccharomyces cerevisiae. Yeast, 1995, 11, 1345-1351.	1.7	60
46	Protein O-Glycosylation in Yeast. Journal of Biological Chemistry, 1995, 270, 2770-2775.	3.4	88
47	A new Dol-P-Man:protein O-D-mannosyltransferase activity from Saccharomyces cerevisiae. Glycobiology, 1995, 5, 77-82.	2.5	22
48	ProteinO-glycosylation inSaccharomyces cerevisiae: the proteinO-mannosyltransferases Pmt1p and Pmt2p function as heterodimer. FEBS Letters, 1995, 377, 128-130.	2.8	49
49	Expression of a sugar-transporter gene family in a photoautotrophic suspension culture of Chenopodium rubrum L. Planta, 1994, 193, 365-71.	3.2	46
50	The HUP1 gene product of Chlorella kessleri: H+/glucose symport studied in vitro. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1194, 149-154.	2.6	13
51	Nystatin changes the properties of transporters for arginine and sugars An in vitro study. FEBS Letters, 1994, 350, 46-50.	2.8	19
52	Unidirectional arginine transport in reconstituted plasma-membrane vesicles from yeast overexpressing CAN1. FEBS Journal, 1993, 211, 683-688.	0.2	45
53	Amino Acid Sequence of an Algal Peptide Elongation Factor EF-2 Deduced from the Complementary DNA Sequence. Plant Physiology, 1991, 97, 469-471.	4.8	9
54	Protein O-glycosylation in Saccharomyces cerevisiae Purification and characterization of the dolichyl-phosphate-D-mannose-protein O-D-mannosyltransferase. FEBS Journal, 1991, 196, 185-190.	0.2	87

#	Article	IF	CITATIONS
55	The Chlorella H+/hexose cotransporter gene. Current Genetics, 1991, 19, 215-219.	1.7	28
56	Purification of the inducible α-agglutinin ofS. cerevisiaeand molecular cloning of the gene. FEBS Letters, 1989, 255, 290-294.	2.8	43
57	The hexose carrier from Chlorella. FEBS Letters, 1989, 259, 43-46.	2.8	138
58	Protein glycosylation in yeast. BBA - Biomembranes, 1987, 906, 81-99.	8.0	320
59	Selection and Characterization of Chlorella Mutants Deficient in Amino Acid Transport. Plant Physiology, 1985, 79, 760-764.	4.8	20
60	Ionenströme und Substratflüsse: Durch ihre Kopplung können Zellen Stoffe aktiv aufnehmen. Biologie in Unserer Zeit, 1985, 15, 8-15.	0.2	1
61	Apparent inhibition of glycoprotein synthesis by S.cerevisiae mating pheromones. FEBS Letters, 1985, 184, 313-317.	2.8	17
62	Further evidence for dolichyl phosphate-mediated glycosyl translocation through membranes. FEMS Microbiology Letters, 1984, 21, 305-308.	1.8	18
63	Saccharomyces cerevisiae mating pheromones specifically inhibit the synthesis of proteins destined to be N-glycosylated. FEBS Journal, 1984, 140, 183-189.	0.2	13
64	Partial Purification and Characterization of Inducible Transport Proteins of Chlorella. Zeitschrift Für Pflanzenphysiologie, 1984, 114, 367-375.	1.4	25
65	A temperature-sensitive N-glycosylation mutant of S. cerevisiae that behaves like a cell-cycle mutant. Experimental Cell Research, 1984, 150, 309-313.	2.6	40
66	Regulation and characterization of two inducible amino-acid transport systems in Chlorella vulgaris. Planta, 1983, 159, 404-410.	3.2	52
67	Saccharomyces cerevisiaeα-factor prevents formation of glycoproteins inacells. FEBS Letters, 1983, 158, 247-251.	2.8	11
68	O-Glycosylation inSaccharomyces cerevisiaeis initiated at the endoplasmic reticulum. FEBS Letters, 1983, 158, 335-338.	2.8	104
69	An obligatory role of protein glycosylation in the life cycle of yeast cells. FEBS Letters, 1982, 148, 49-53.	2.8	71
70	Solubilization and Characterization of the Initial Enzymes of the Dolichol Pathway from Yeast. FEBS Journal, 1982, 126, 319-325.	0.2	56
71	Occurrence of several glycoproteins in glyoxysomal membranes of castor beans. FEBS Letters, 1981, 131, 68-72.	2.8	25
72	N-Glycosylation of Yeast Proteins. Characterization of the Solubilized Oligosaccharyl Transferase. FEBS Journal, 1981, 116, 101-108.	0.2	130

#	Article	IF	CITATIONS
73	Dolichyl phosphate linked sugars as intermediates in the synthesis of yeast mannoproteins: an in vivo study. Archives of Microbiology, 1980, 127, 231-237.	2.2	22
74	Yeast Mannosyl Transferases Requiring Dolichyl Phosphate and Dolichyl Phosphate Mannose as Substrate. Partial Purification and Characterization of the Solubilized Enzyme. FEBS Journal, 1980, 105, 509-515.	0.2	47
75	Specificity of Solubilized Yeast Glycosyl Transferases for Polyprenyl Derivatives. FEBS Journal, 1980, 105, 517-523.	0.2	85
76	Glycosylation of Intra- and Extra-cellular Yeast Glycoproteins. Biochemical Society Transactions, 1979, 7, 329-331.	3.4	7
77	Dolichylphosphate-dependent Glycosyl Transfer Reactions in the Endoplasmic Reticulum of Castor Bean Endosperm. Plant Physiology, 1979, 64, 445-449.	4.8	27
78	Effects of Gibberellic Acid and of Tunicamycin on Glycosyl-Transferase Activities and on alpha-Amylase Secretion in Barley. FEBS Journal, 1979, 102, 375-382.	0.2	35
79	The effect of intracellular pH on the rate of hexose uptake in Chlorella. Biochimica Et Biophysica Acta - Biomembranes, 1979, 555, 524-530.	2.6	59
80	On the Biosynthesis of Carboxypeptidase Y (CY). , 1979, , 677-679.		0
81	Glycosyl Transfer from Dolichyl Phosphate Sugars to Endogenous and Exogenous Glycoprotein Acceptors in Yeast. FEBS Journal, 1978, 83, 563-570.	0.2	81
82	Biosynthesis of the Vacuolar Yeast Glycoprotein Carboxypeptidase Y. Conversion of Precursor into the Enzyme. FEBS Journal, 1978, 85, 599-608.	0.2	166
83	Carbohydrate Moiety of Carboxypeptidase Y and Perturbation of Its Biosynthesis. FEBS Journal, 1978, 91, 567-575.	0.2	147
84	A membrane-associated isozyme of invertase in yeast precursor of the external glycoprotein. Biochimica Et Biophysica Acta - General Subjects, 1978, 538, 426-434.	2.4	32
85	Subcellular site of mannosyl transfer to dolichyl phosphate in Phaseolus aureus. Plant Science Letters, 1978, 11, 27-34.	1.8	24
86	Essential Sulfhydryl Group in the Transport-catalyzing Protein of the Hexose-Proton Cotransport System of Chlorella. Plant Physiology, 1978, 61, 785-786.	4.8	23
87	A proton-cotransport system in a higher plant: Sucrose transport in Ricinus communis. Plant Science Letters, 1977, 9, 153-162.	1.8	160
88	Characterization and Partial Purification of an Inducible Protein Related to Hexose Proton Cotransport of Chlorella vulgaris. FEBS Journal, 1977, 72, 509-514.	0.2	23
89	Biosynthesis of carboxypeptidase Y in yeast. Evidence for a precursor form of the glycoprotein. Biochemical and Biophysical Research Communications, 1976, 72, 1430-1436.	2.1	27
90	The Determination of the Membrane Potential of Chlorella vulgaris. Evidence for Electrogenic Sugar Transport. FEBS Journal, 1976, 70, 197-204.	0.2	152

#	Article	IF	CITATIONS
91	Inhibition of the Apparent Rate of Synthesis of the Vacuolar Glycoprotein Carboxypeptidase Y and Its Protein Antigen by Tunicamycin in <i>Saccharomyces cerevisiae</i> . Antimicrobial Agents and Chemotherapy, 1976, 10, 402-410.	3.2	46
92	Formation of lipid-bound oligosaccharides in yeast. Biochimica Et Biophysica Acta - General Subjects, 1975, 399, 364-374.	2.4	85
93	Rapid release of free fatty acids during cell breakage and their effects on a sugar-proton cotransport system inChlorella vulgaris. FEBS Letters, 1975, 60, 346-348.	2.8	17
94	The Hexose-Proton Cotransport System of Chlorella. Journal of General Physiology, 1974, 64, 568-581.	1.9	155
95	The Hexose-Proton Symport System of Chlorella vulgaris. Specificity Stoichiometry Energetics of Sugar-Induced Proton Uptake. FEBS Journal, 1974, 44, 219-223.	0.2	131
96	The Role of Dolicholmonophosphate in Glycoprotein Biosynthesis in Saccharomyces cerevisiae. FEBS Journal, 1974, 46, 35-41.	0.2	155
97	Membrane-bound mannosyl transferase in yeast glycoprotein biosynthesis. Biochimica Et Biophysica Acta - Biomembranes, 1974, 350, 225-235.	2.6	84
98	Identification of the Lipid Intermediate in Yeast Mannan Biosynthesis. FEBS Journal, 1973, 37, 1-6.	0.2	103
99	The Function of myo-Inositol in the Biosynthesis of Raffinose. Purification and Characterization of Galactinol:Sucrose 6-Galactosyltransferase from Vicia faba Seeds. FEBS Journal, 1973, 38, 103-110.	0.2	103
100	The Active Hexose-Uptake System of Chlorella vulgaris. Km-Values for 6-Deoxyglucose Influx and Efflux and Their Contribution to Sugar Accumulation. FEBS Journal, 1973, 39, 193-200.	0.2	52
101	myo-Inositol, a Cofactor in the Biosynthesis of Raffinose. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1970, 351, 1494-1498.	1.6	31