Barry J Goldstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10462537/publications.pdf

Version: 2024-02-01

75	13,246	46	71 g-index
papers	citations	h-index	
151	151	151	14377 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Type 2 diabetes: principles of pathogenesis and therapy. Lancet, The, 2005, 365, 1333-1346.	13.7	1,976
2	Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature, 1991, 352, 73-77.	27.8	1,516
3	Adiponectin: A Novel Adipokine Linking Adipocytes and Vascular Function. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2563-2568.	3.6	584
4	Adiponectin regulates albuminuria and podocyte function in mice. Journal of Clinical Investigation, 2008, 118, 1645-56.	8.2	493
5	The NAD(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation of H 2 O 2 and Plays an Integral Role in Insulin Signal Transduction. Molecular and Cellular Biology, 2004, 24, 1844-1854.	2.3	471
6	AMPK and cell proliferation – AMPK as a therapeutic target for atherosclerosis and cancer. Journal of Physiology, 2006, 574, 63-71.	2.9	457
7	Effect of Initial Combination Therapy With Sitagliptin, a Dipeptidyl Peptidase-4 Inhibitor, and Metformin on Glycemic Control in Patients With Type 2 Diabetes. Diabetes Care, 2007, 30, 1979-1987.	8.6	453
8	Insulin-stimulated Hydrogen Peroxide Reversibly Inhibits Protein-tyrosine Phosphatase 1B in Vivo and Enhances the Early Insulin Action Cascade. Journal of Biological Chemistry, 2001, 276, 21938-21942.	3.4	444
9	Involvement of AMP-Activated Protein Kinase in Glucose Uptake Stimulated by the Globular Domain of Adiponectin in Primary Rat Adipocytes. Diabetes, 2003, 52, 1355-1363.	0.6	416
10	Adiponectin Cardioprotection After Myocardial Ischemia/Reperfusion Involves the Reduction of Oxidative/Nitrative Stress. Circulation, 2007, 115, 1408-1416.	1.6	411
11	Tyrosine Dephosphorylation and Deactivation of Insulin Receptor Substrate-1 by Protein-tyrosine Phosphatase 1B. Journal of Biological Chemistry, 2000, 275, 4283-4289.	3.4	357
12	Insulin resistance as the core defect in type 2 diabetes mellitus. American Journal of Cardiology, 2002, 90, 3-10.	1.6	304
13	Redox Paradox. Diabetes, 2005, 54, 311-321.	0.6	303
14	Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochemical and Biophysical Research Communications, 2004, 315, 264-271.	2.1	288
15	Hydrogen Peroxide Generated during Cellular Insulin Stimulation Is Integral to Activation of the Distal Insulin Signaling Cascade in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2001, 276, 48662-48669.	3.4	262
16	Protective vascular and myocardial effects of adiponectin. Nature Clinical Practice Cardiovascular Medicine, 2009, 6, 27-35.	3.3	240
17	Adiponectin Suppression of High-Glucose-Induced Reactive Oxygen Species in Vascular Endothelial Cells: Evidence for Involvement of a cAMP Signaling Pathway. Diabetes, 2006, 55, 1840-1846.	0.6	236
18	Safety and tolerability of sitagliptin in clinical studies: a pooled analysis of data from 10,246 patients with type 2 diabetes. BMC Endocrine Disorders, 2010, 10, 7.	2.2	234

#	Article	IF	Citations
19	Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. Journal of Clinical Investigation, 2007, 117, 1718-1726.	8.2	228
20	Osmotic Loading of Neutralizing Antibodies Demonstrates a Role for Protein-tyrosine Phosphatase 1B in Negative Regulation of the Insulin Action Pathway. Journal of Biological Chemistry, 1995, 270, 20503-20508.	3.4	211
21	Role of Insulin-Induced Reactive Oxygen Species in the Insulin Signaling Pathway. Antioxidants and Redox Signaling, 2005, 7, 1021-1031.	5.4	209
22	Important Role of Nox4 Type NADPH Oxidase in Angiogenic Responses in Human Microvascular Endothelial Cells In Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2319-2324.	2.4	164
23	Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Molecular and Cellular Biochemistry, 1998, 182, 91-99.	3.1	159
24	Reactive oxygen species production via NADPH oxidase mediates TGF- \hat{l}^2 -induced cytoskeletal alterations in endothelial cells. American Journal of Physiology - Renal Physiology, 2005, 289, F816-F825.	2.7	153
25	Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1703-E1708.	3.5	153
26	Insulin Receptor Signaling Is Augmented by Antisense Inhibition of the Protein Tyrosine Phosphatase LAR. Journal of Biological Chemistry, 1995, 270, 2435-2438.	3.4	143
27	AMP-Activated Protein Kinase Deficiency Enhances Myocardial Ischemia/Reperfusion Injury but Has Minimal Effect on the Antioxidant/Antinitrative Protection of Adiponectin. Circulation, 2009, 119, 835-844.	1.6	128
28	Efficacy and safety of initial combination therapy with sitagliptin and metformin in patients with type 2 diabetes: a 54-week study. Current Medical Research and Opinion, 2009, 25, 569-583.	1.9	122
29	Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism: Clinical and Experimental, 1995, 44, 1175-1184.	3.4	116
30	The Transmembrane Protein-tyrosine Phosphatase LAR Modulates Signaling by Multiple Receptor Tyrosine Kinases. Journal of Biological Chemistry, 1996, 271, 748-754.	3.4	113
31	Safety and Tolerability of Sitagliptin in Type 2 Diabetes: Pooled Analysis of 25 Clinical Studies. Diabetes Therapy, 2013, 4, 119-145.	2.5	109
32	Type 2 diabetes: pathogenesis and treatment. Lancet, The, 2008, 371, 2153-2156.	13.7	103
33	Protein-Tyrosine phosphatases and the regulation of insulin action. Journal of Cellular Biochemistry, 1992, 48, 33-42.	2.6	92
34	Functional Association between the Insulin Receptor and the Transmembrane Protein-tyrosine Phosphatase LAR in Intact Cells. Journal of Biological Chemistry, 1997, 272, 448-457.	3.4	91
35	The Insulin Receptor and Its Substrate: Molecular Determinants of Early Events in Insulin Action. , 1993, 48, 291-339.		86
36	Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovascular Research, 2008, 78, 376-384.	3.8	86

#	Article	IF	CITATIONS
37	Cardiovascular safety of sitagliptin in patients with type 2 diabetes mellitus: a pooled analysis. Cardiovascular Diabetology, 2013, 12, 3.	6.8	84
38	Protein-Tyrosine Phosphatases: Emerging Targets for Therapeutic Intervention in Type 2 Diabetes and Related States of Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2474-2480.	3.6	71
39	Effect of tesaglitazar, a dual PPARα/γ agonist, on glucose and lipid abnormalities in patients with type 2 diabetes: a 12â€week dose-ranging trial. Current Medical Research and Opinion, 2006, 22, 2575-2590.	1.9	70
40	Adiponectin suppresses llºB kinase activation induced by tumor necrosis factor-l̂± or high glucose in endothelial cells: role of cAMP and AMP kinase signaling. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1836-E1844.	3.5	70
41	Adiponectin Protects Against Angiotensin II or Tumor Necrosis Factor α–Induced Endothelial Cell Monolayer Hyperpermeability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 899-905.	2.4	58
42	The addition of sitagliptin to ongoing metformin therapy significantly improves glycemic control in Chinese patients with type 2 diabetes*⟨sup⟩â€⟨ sup⟩. Journal of Diabetes, 2012, 4, 227-237.	1.8	56
43	Variation in Insulin Receptor Messenger Ribonucleic Acid Expression in Human and Rodent Tissues. Molecular Endocrinology, 1987, 1, 759-766.	3.7	55
44	Pathogenesis of Type 2 Diabetes. Endocrine Research, 2007, 32, 19-37.	1.2	53
45	Multicenter, randomized, double-masked, parallel-group assessment of simultaneous glipizide/metformin as second-line pharmacologic treatment for patients with type 2 diabetes mellitus that is inadequately controlled by a sulfonylurea. Clinical Therapeutics, 2003, 25, 890-903.	2,5	52
46	Adipokines and vascular disease in diabetes. Current Diabetes Reports, 2007, 7, 25-33.	4.2	49
47	TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells. Biochemical and Biophysical Research Communications, 2006, 347, 1113-1120.	2.1	48
48	Effect of tumor necrosis factor- \hat{l}_{\pm} on the phosphorylation of tyrosine kinase receptors is associated with dynamic alterations in specific protein-tyrosine phosphatases. Journal of Cellular Biochemistry, 1997, 64, 117-127.	2.6	42
49	Hyperglycemia Potentiates H2O2 Production in Adipocytes and Enhances Insulin Signal Transduction: Potential Role for Oxidative Inhibition of Thiol-Sensitive Protein-Tyrosine Phosphatases. Antioxidants and Redox Signaling, 2005, 7, 526-537.	5.4	40
50	Efficacy and safety of sitagliptin added to ongoing metformin and rosiglitazone combination therapy in a randomized placeboâ€controlled 54â€week trial in patients with type 2 diabetes (一项为期54å"çš"å⁻¹ Diabetes, 2013, 5, 68-79.	æŒ ∮»ä ¹½¿ç	."" #9 E甲åŒ
51	Integration of multiple downstream signals determines the net effect of insulin on MAP kinase vs. PI $3\hat{a}\in^2$ -kinase activation: potential role of insulin-stimulated H2O2. Cellular Signalling, 2004, 16, 323-331.	3.6	36
52	Differentiating members of the thiazolidinedione class: a focus on efficacy. Diabetes/Metabolism Research and Reviews, 2002, 18, S16-S22.	4.0	33
53	Safety of Sitagliptin in Elderly Patients with Type 2 Diabetes: A Pooled Analysis of 25 Clinical Studies. Drugs and Aging, 2014, 31, 203-214.	2.7	33
54	Regulation of Insulin Action by Protein Tyrosine Phosphatases. Vitamins and Hormones, 1998, 54, 67-96.	1.7	31

#	Article	IF	Citations
55	Enhancement of post-receptor insulin signaling by trivalent chromium in hepatoma cells is associated with differential inhibition of specific protein-tyrosine phosphatases. Journal of Trace Elements in Experimental Medicine, 2001, 14, 393-404.	0.8	28
56	Dual PPAR $\hat{l}\pm/\hat{l}^3$ Agonists: Promises and Pitfalls in Type 2 Diabetes. American Journal of Therapeutics, 2007, 14, 49-62.	0.9	28
57	Protein-tyrosine phosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptake and is a target of insulin-induced oxidative inhibition. Metabolism: Clinical and Experimental, 2003, 52, 705-712.	3.4	26
58	A randomized clinical trial evaluating the safety and efficacy of sitagliptin added to the combination of sulfonylurea and metformin in patients with type 2 diabetes mellitus and inadequate glycemic control. Journal of Diabetes, 2016, 8, 701-711.	1.8	23
59	Depot-Specific Variation in Protein-Tyrosine Phosphatase Activities in Human Omental and Subcutaneous Adipose Tissue: A Potential Contribution to Differential Insulin Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5973-5980.	3.6	21
60	Use of an anaerobic environment to preserve the endogenous activity of proteinâ€tyrosine phosphatases isolated from intact cells. FASEB Journal, 2001, 15, 1637-1639.	0.5	20
61	Increased activity and expression of MAP kinase in HCC model rats induced by 3′-methyl-4-dimethylamino-azobenzene. Journal of Hepatology, 1999, 31, 725-733.	3.7	19
62	Reductions in biomarkers of cardiovascular risk in type 2 diabetes with rosiglitazone added to metformin compared with dose escalation of metformin: an EMPIRE trial sub-study. Current Medical Research and Opinion, 2006, 22, 1715-1723.	1.9	18
63	Clinical Translation of "A Diabetes Outcome Progression Trial―ADOPTAppropriate Combination Oral Therapies in Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1226-1228.	3.6	17
64	Insulin Receptor Messenger Ribonucleic Acid Sequence Alterations Detected by Ribonuclease Cleavage in Patients with Syndromes of Insulin Resistance*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 15-24.	3.6	16
65	Modulation of expression of insulin and IGF-I receptor by Epstein-Barr virus and its gene products LMP and EBNA-2 in lymphocyte cell lines. Journal of Cellular Physiology, 1993, 154, 486-495.	4.1	15
66	Insulin resistance: from benign to type 2 diabetes mellitus. Reviews in Cardiovascular Medicine, 2003, 4 Suppl 6, S3-10.	1.4	14
67	Approaches to the molecular cloning of protein-tyrosine phosphatases in insulin-sensitive tissues. Molecular and Cellular Biochemistry, 1992, 109, 107-13.	3.1	10
68	Are the metabolic effects of rosiglitazone influenced by baseline glycaemic control?. Current Medical Research and Opinion, 2003, 19, 192-199.	1.9	10
69	Rottlerin activates AMPK possibly through LKB1 in vascular cells and tissues. Biochemical and Biophysical Research Communications, 2008, 376, 434-438.	2.1	7
70	Assessment of AACE/ACE Recommendations for Initial Dual Antihyperglycemic Therapy Using the Fixed-Dose Combination of Sitagliptin and Metformin Versus Metformin. Endocrine Practice, 2013, 19, 751-757.	2.1	7
71	Cell density-dependent changes in the insulin action pathway: Evidence for involvement of protein-tyrosine phosphatases., 1996, 61, 31-38.		6
72	Comment on: Hattori et al. (2007) Globular Adiponectin Activates Nuclear Factor-ÂB and Activating Protein-1 and Enhances Angiotensin II-Induced Proliferation in Cardiac Fibroblasts: Diabetes 56:804-808. Diabetes, 2007, 56, e7-e8.	0.6	3

#	Article	IF	CITATIONS
73	Treatment-Induced Changes in Plasma Adiponectin Do Not Reduce Urinary Albumin Excretion in the Diabetes Prevention Program Cohort. PLoS ONE, 2015, 10, e0136853.	2.5	1
74	Intensive insulin therapy regimens: is there a difference in patient satisfaction?. Nature Clinical Practice Endocrinology and Metabolism, 2005, 1, 80-81.	2.8	0
75	Inflammatory Signaling: Another Drug Target to Improve Glycemic Control in Type 2 Diabetes. Clinical and Translational Science, 2008, 1, 43-44.	3.1	O