List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1046142/publications.pdf Version: 2024-02-01

	1099	2332
43,396	112	199
citations	h-index	g-index
319	319	27408
docs citations	times ranked	citing authors
	citations 319	43,396 112 citations h-index 319 319

#	Article	IF	CITATIONS
1	Structurally ordered highâ€entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. SmartMat, 2023, 4, .	10.7	23
2	Activating surface atoms of high entropy oxides for enhancing oxygen evolution reaction. Chinese Chemical Letters, 2023, 34, 107571.	9.0	9
3	Ambient Fast Synthesis of Superaerophobic/Superhydrophilic Electrode for Superior Electrocatalytic Water Oxidation. Energy and Environmental Materials, 2023, 6, .	12.8	4
4	Etching oxide overlayers of NiFe phosphide to facilitate surface reconstruction for oxygen evolution reaction. Green Energy and Environment, 2022, 7, 365-371.	8.7	12
5	Green Synthesis of Nitrogenâ€toâ€Ammonia Fixation: Past, Present, and Future. Energy and Environmental Materials, 2022, 5, 452-457.	12.8	51
6	Recent Progress on Electrocatalytic Valorization of Biomassâ€Derived Organics. Energy and Environmental Materials, 2022, 5, 1117-1138.	12.8	38
7	Tailoring Competitive Adsorption Sites by Oxygenâ€Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Advanced Materials, 2022, 34, e2107185.	21.0	162
8	Highâ€Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. Small, 2022, 18, e2104339.	10.0	82
9	FeP Modulated Adsorption with Hydrogen and Phosphate Species for Hydrogen Oxidation in Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, 2106758.	14.9	9
10	Dopingâ€Modulated Strain Enhancing the Phosphate Tolerance on PtFe Alloys for Highâ€Temperature Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, .	14.9	45
11	Fluorination-enabled interface of PtNi electrocatalysts for high-performance high-temperature proton exchange membrane fuel cells. Science China Materials, 2022, 65, 904-912.	6.3	11
12	Co-CoF2 heterojunctions encapsulated in N, F co-doped porous carbon as bifunctional oxygen electrocatalysts for Zn-air batteries. Chemical Engineering Journal, 2022, 433, 133541.	12.7	23
13	lon migration and defect effect of electrode materials in multivalent-ion batteries. Progress in Materials Science, 2022, 125, 100911.	32.8	79
14	Sublayer-enhanced atomic sites of single atom catalysts through <i>in situ</i> atomization of metal oxide nanoparticles. Energy and Environmental Science, 2022, 15, 1183-1191.	30.8	25
15	Transforming Electrocatalytic Biomass Upgrading and Hydrogen Production from Electricity Input to Electricity Output. Angewandte Chemie, 2022, 134, .	2.0	17
16	Transforming Electrocatalytic Biomass Upgrading and Hydrogen Production from Electricity Input to Electricity Output. Angewandte Chemie - International Edition, 2022, 61, e202115636.	13.8	50
17	Advanced Zn–I ₂ Battery with Excellent Cycling Stability and Good Rate Performance by a Multifunctional Iodine Host. ACS Applied Materials & Interfaces, 2022, 14, 8955-8962.	8.0	38
18	Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nature Catalysis, 2022, 5, 66-73.	34.4	276

#	Article	IF	CITATIONS
19	A Waveguide-Integrated Two-Dimensional Light-Emitting Diode Based on p-Type WSe ₂ /n-Type CdS Nanoribbon Heterojunction. ACS Nano, 2022, 16, 4371-4378.	14.6	17
20	Integrated Catalytic Sites for Highly Efficient Electrochemical Oxidation of the Aldehyde and Hydroxyl Groups in 5-Hydroxymethylfurfural. ACS Catalysis, 2022, 12, 4242-4251.	11.2	74
21	Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Energy Chemistry, 2022, 71, 411-417.	12.9	30
22	Electrochemically formed PtFeNi alloy nanoparticles on defective NiFe LDHs with charge transfer for efficient water splitting. Chinese Journal of Catalysis, 2022, 43, 1101-1110.	14.0	12
23	Cobalt-regulation-induced dual active sites in Ni2P for hydrazine electrooxidation. Chinese Journal of Catalysis, 2022, 43, 1131-1138.	14.0	9
24	Activated Ni–OH Bonds in a Catalyst Facilitates the Nucleophile Oxidation Reaction. Advanced Materials, 2022, 34, e2105320.	21.0	47
25	Magnetic Doping Induced Strong Circularly Polarized Light Emission and Detection in 2D Layered Halide Perovskite. Advanced Optical Materials, 2022, 10, .	7.3	17
26	Manipulating Picosecond Photoresponse in van der Waals Heterostructure Photodetectors. Advanced Functional Materials, 2022, 32, .	14.9	6
27	Neuron-inspired design of hierarchically porous carbon networks embedded with single-iron sites for efficient oxygen reduction. Science China Chemistry, 2022, 65, 1445-1452.	8.2	17
28	Phosphotungstic acid modification boosting the cathode methanol tolerance for high-temperature direct methanol fuel cells. Journal of Power Sources, 2022, 541, 231643.	7.8	4
29	Oxygen Vacancy-Mediated Selective C–N Coupling toward Electrocatalytic Urea Synthesis. Journal of the American Chemical Society, 2022, 144, 11530-11535.	13.7	142
30	Understanding the surface segregation behavior of bimetallic CoCu toward HMF oxidation reaction. Journal of Energy Chemistry, 2022, 74, 85-90.	12.9	19
31	Promoting surface reconstruction of NiFe layered double hydroxides via intercalating [Cr(C2O4)3]3â^' for enhanced oxygen evolution. Journal of Energy Chemistry, 2022, 74, 140-148.	12.9	20
32	Recent advances in defect electrocatalysts: Preparation and characterization. Journal of Energy Chemistry, 2021, 53, 208-225.	12.9	98
33	First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells. Applied Catalysis B: Environmental, 2021, 284, 119717.	20.2	28
34	Regulating carbon work function to boost electrocatalytic activity for the oxygen reduction reaction. Chinese Journal of Catalysis, 2021, 42, 938-944.	14.0	13
35	Electroreduction of Carbon Dioxide Driven by the Intrinsic Defects in the Carbon Plane of a Single Fe–N ₄ Site. Advanced Materials, 2021, 33, e2003238.	21.0	202
36	Tuning the Selective Adsorption Site of Biomass on Co ₃ O ₄ by Ir Single Atoms for Electrosynthesis. Advanced Materials, 2021, 33, e2007056.	21.0	217

#	Article	IF	CITATIONS
37	Perfecting electrocatalysts <i>via</i> imperfections: towards the large-scale deployment of water electrolysis technology. Energy and Environmental Science, 2021, 14, 1722-1770.	30.8	213
38	Fe ²⁺ â€Induced In Situ Intercalation and Cation Exsolution of Co ₈₀ Fe ₂₀ (OH)(OCH ₃) with Rich Vacancies for Boosting Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009245.	14.9	38
39	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie, 2021, 133, 7373-7383.	2.0	24
40	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie - International Edition, 2021, 60, 7297-7307.	13.8	204
41	Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts. Nano Research, 2021, 14, 4650-4657.	10.4	23
42	Li ⁺ Selectivity of Carboxylate Graphene Nanopores Inspired by Electric Field and Nanoconfinement. Small, 2021, 17, e2006704.	10.0	15
43	An Investigation of Active Sites for electrochemical CO ₂ Reduction Reactions: From In Situ Characterization to Rational Design. Advanced Science, 2021, 8, 2003579.	11.2	101
44	Nonnitrogen Coordination Environment Steering Electrochemical CO ₂ -to-CO Conversion over Single-Atom Tin Catalysts in a Wide Potential Window. ACS Catalysis, 2021, 11, 5212-5221.	11.2	79
45	Surface Modification of Carbon-Based Electrodes for Vanadium Redox Flow Batteries. Energy & Fuels, 2021, 35, 8617-8633.	5.1	33
46	Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Science China Materials, 2021, 64, 2454-2466.	6.3	43
47	Defectâ€Rich Highâ€Entropy Oxide Nanosheets for Efficient 5â€Hydroxymethylfurfural Electrooxidation. Angewandte Chemie, 2021, 133, 20415-20420.	2.0	29
48	Defectâ€Rich Highâ€Entropy Oxide Nanosheets for Efficient 5â€Hydroxymethylfurfural Electrooxidation. Angewandte Chemie - International Edition, 2021, 60, 20253-20258.	13.8	184
49	Coupling Electrocatalytic Nitric Oxide Oxidation over Carbon Cloth with Hydrogen Evolution Reaction for Nitrate Synthesis. Angewandte Chemie - International Edition, 2021, 60, 24605-24611.	13.8	59
50	Construction of Nickelâ€Based Dual Heterointerfaces towards Accelerated Alkaline Hydrogen Evolution via Boosting Multiâ€Step Elementary Reaction. Advanced Functional Materials, 2021, 31, 2104827.	14.9	42
51	Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Science China Chemistry, 2021, 64, 1586-1595.	8.2	26
52	Coupling Electrocatalytic Nitric Oxide Oxidation over Carbon Cloth with Hydrogen Evolution Reaction for Nitrate Synthesis. Angewandte Chemie, 2021, 133, 24810-24816.	2.0	16
53	Coupling Glucoseâ€Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production. Advanced Materials, 2021, 33, e2104791.	21.0	126
54	Defect Engineering on CeO ₂ â€Based Catalysts for Heterogeneous Catalytic Applications. Small Structures, 2021, 2, 2100058.	12.0	94

#	Article	IF	CITATIONS
55	Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation. Journal of Energy Chemistry, 2021, 60, 121-126.	12.9	54
56	Colloid self-assembly of c-axis oriented hydroxide thin films to boost the electrocatalytic oxidation reaction. Chemical Engineering Journal, 2021, 420, 130532.	12.7	12
57	Platinum Modulates Redox Properties and 5â€Hydroxymethylfurfural Adsorption Kinetics of Ni(OH) ₂ for Biomass Upgrading. Angewandte Chemie - International Edition, 2021, 60, 22908-22914.	13.8	154
58	Recent Progress and Prospective of Nickel Selenide-Based Electrocatalysts for Water Splitting. Energy & Fuels, 2021, 35, 14283-14303.	5.1	32
59	Platinum Modulates Redox Properties and 5â€Hydroxymethylfurfural Adsorption Kinetics of Ni(OH) ₂ for Biomass Upgrading. Angewandte Chemie, 2021, 133, 23090-23096.	2.0	8
60	An option for green and sustainable future: Electrochemical conversion of ammonia into nitrogen. Journal of Energy Chemistry, 2021, 60, 384-402.	12.9	27
61	Activity origin and alkalinity effect of electrocatalytic biomass oxidation on nickel nitride. Journal of Energy Chemistry, 2021, 61, 179-185.	12.9	50
62	Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy and Environmental Science, 2021, 14, 6428-6440.	30.8	164
63	Advanced Cathode Electrocatalysts for Fuel Cells: Understanding, Construction, and Application of Carbon-Based and Platinum-Based Nanomaterials. , 2021, 3, 1610-1634.		26
64	Emerging Small Science on Nanomaterials for Energy Storage and Catalysis. Small Science, 2021, 1, 2100101.	9.9	1
65	Electrocatalytic C–N Coupling for Urea Synthesis. Small Science, 2021, 1, 2100070.	9.9	86
66	Electrochemistry-Assisted Photoelectrochemical Reduction of Nitrogen to Ammonia. Journal of Physical Chemistry C, 2021, 125, 23041-23049.	3.1	18
67	Defect Chemistry Special Collection. Chemistry - an Asian Journal, 2021, 16, 112-113.	3.3	0
68	Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells. Science China Chemistry, 2021, 64, 2203-2211.	8.2	16
69	Recent Advances on Electrolysis for Simultaneous Generation of Valuable Chemicals at both Anode and Cathode. Advanced Energy Materials, 2021, 11, 2102292.	19.5	129
70	Scanning probe microscopy for electrocatalysis. Matter, 2021, 4, 3483-3514.	10.0	17
71	Room-temperature chemical looping hydrogen production mediated by electrochemically induced heterogeneous Cu(I)/Cu(II) redox. Chem Catalysis, 2021, 1, 1493-1504.	6.1	20
72	Room temperature plasma enriching oxygen vacancies of WO3 nanoflakes for photoelectrochemical water oxidation. Journal of Alloys and Compounds, 2020, 816, 152610.	5.5	17

#	Article	IF	CITATIONS
73	Charge Transfer Modulated Activity of Carbonâ€Based Electrocatalysts. Advanced Energy Materials, 2020, 10, 1901227.	19.5	156
74	Optimal Geometrical Configuration of Cobalt Cations in Spinel Oxides to Promote Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 4766-4772.	2.0	37
75	Regulating Hydrogenation Chemoselectivity of α,βâ€Unsaturated Aldehydes by Combination of Transfer and Catalytic Hydrogenation. ChemSusChem, 2020, 13, 1746-1750.	6.8	16
76	Optimal Geometrical Configuration of Cobalt Cations in Spinel Oxides to Promote Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 4736-4742.	13.8	134
77	Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. Journal of Materials Chemistry A, 2020, 8, 2453-2462.	10.3	71
78	Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN ₄ for Ultraefficient Oxygen Reduction Reaction in Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2020, 59, 2688-2694.	13.8	355
79	Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN ₄ for Ultraefficient Oxygen Reduction Reaction in Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2020, 132, 2710-2716.	2.0	36
80	Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. CheM, 2020, 6, 2974-2993.	11.7	302
81	Interlayer ligand engineering of β-Ni(OH)2 for oxygen evolution reaction. Science China Chemistry, 2020, 63, 1684-1693.	8.2	15
82	Sulfur-Rich (NH ₄) ₂ Mo ₃ S ₁₃ as a Highly Reversible Anode for Sodium/Potassium-Ion Batteries. ACS Nano, 2020, 14, 9626-9636.	14.6	43
83	Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5â€Hydroxymethylfurfural. Angewandte Chemie - International Edition, 2020, 59, 19215-19221.	13.8	211
84	Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5â€Hydroxymethylfurfural. Angewandte Chemie, 2020, 132, 19377-19383.	2.0	41
85	Controlled chelation between tannic acid and Fe precursors to obtain N, S co-doped carbon with high density Fe-single atom-nanoclusters for highly efficient oxygen reduction reaction in Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 17136-17149.	10.3	64
86	Defect Chemistry in Heterogeneous Catalysis: Recognition, Understanding, and Utilization. ACS Catalysis, 2020, 10, 11082-11098.	11.2	324
87	Nonâ€Metal Singleâ€Phosphorusâ€Atom Catalysis of Hydrogen Evolution. Angewandte Chemie, 2020, 132, 23999-24007.	2.0	16
88	Nonâ€Metal Singleâ€Phosphorusâ€Atom Catalysis of Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 23791-23799.	13.8	69
89	Regulation of Morphology and Electronic Structure of NiSe ₂ by Fe for High Effective Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2020, 15, 3845-3852.	3.3	17
90	Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Science China Chemistry, 2020, 63, 980-986.	8.2	85

#	Article	IF	CITATIONS
91	Atomically Dispersed Fe on Nanosheet-linked, Defect-rich, Highly N-Doped 3D Porous Carbon for Efficient Oxygen Reduction. Chemical Research in Chinese Universities, 2020, 36, 453-458.	2.6	12
92	<i>Operando</i> Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co ₃ O ₄ for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 12087-12095.	13.7	736
93	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	13.6	485
94	Identifying the Intrinsic Relationship between the Restructured Oxide Layer and Oxygen Evolution Reaction Performance on the Cobalt Pnictide Catalyst. Small, 2020, 16, e1906867.	10.0	72
95	Defect Engineering for Fuelâ€Cell Electrocatalysts. Advanced Materials, 2020, 32, e1907879.	21.0	338
96	Nanostructured electrocatalysts for electrochemical carboxylation with CO ₂ . Nano Select, 2020, 1, 135-151.	3.7	26
97	Defect engineering of the protection layer for photoelectrochemical devices. EnergyChem, 2020, 2, 100039.	19.1	15
98	Advanced Exfoliation Strategies for Layered Double Hydroxides and Applications in Energy Conversion and Storage. Advanced Functional Materials, 2020, 30, 1909832.	14.9	94
99	Defect repair of tin selenide photocathode <i>via in situ</i> selenization: enhanced photoelectrochemical performance and environmental stability. Journal of Materials Chemistry A, 2020, 8, 5342-5349.	10.3	8
100	In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy, 2020, 71, 104653.	16.0	149
101	Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 3906-3929.	3.3	90
102	Three-Dimensional Self-assembled Hairball-Like VS4 as High-Capacity Anodes for Sodium-Ion Batteries. Nano-Micro Letters, 2020, 12, 39.	27.0	35
103	Defect Engineering on Electrode Materials for Rechargeable Batteries. Advanced Materials, 2020, 32, e1905923.	21.0	543
104	In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Research, 2020, 2020, 5487237.	5.7	10
105	Frontispiece: Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, .	3.3	0
106	3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 293-299.	18.0	76
107	Sâ€Doped Carbon Fibers Uniformly Embedded with Ultrasmall TiO ₂ for Na ⁺ /Li ⁺ Storage with High Capacity and Longâ€Time Stability. Small, 2019, 15, e1902201.	10.0	40
108	Interfacial effects in supported catalysts for electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 23432-23450.	10.3	94

7

#	Article	IF	CITATIONS
109	A high-performance, highly bendable quasi-solid-state zinc–organic battery enabled by intelligent proton-self-buffering copolymer cathodes. Journal of Materials Chemistry A, 2019, 7, 17292-17298.	10.3	40
110	Disordered CoFePi nanosheets with rich vacancies as oxygen evolving electrocatalysts: Insight into the local atomic environment. Journal of Power Sources, 2019, 427, 215-222.	7.8	29
111	Tuning the Electron Localization of Gold Enables the Control of Nitrogenâ€ŧoâ€Ammonia Fixation. Angewandte Chemie - International Edition, 2019, 58, 18604-18609.	13.8	146
112	Tuning the Electron Localization of Gold Enables the Control of Nitrogenâ€ŧoâ€Ammonia Fixation. Angewandte Chemie, 2019, 131, 18777-18782.	2.0	8
113	Electronic structure regulation on layered double hydroxides for oxygen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1822-1840.	14.0	48
114	Quinary Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 44018-44025.	8.0	15
115	Na/Liâ€lon Batteries: Sâ€Đoped Carbon Fibers Uniformly Embedded with Ultrasmall TiO ₂ for Na ⁺ /Li ⁺ Storage with High Capacity and Longâ€Time Stability (Small 38/2019). Small, 2019, 15, 1970207.	10.0	0
116	Electrochemical Oxidation of 5â€Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy. Angewandte Chemie, 2019, 131, 16042-16050.	2.0	100
117	Electrochemical Oxidation of 5â€Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 15895-15903.	13.8	309
118	Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2019, 2, 688-695.	34.4	423
119	Micromachining of ferrous metal with an ion implanted diamond cutting tool. Carbon, 2019, 152, 598-608.	10.3	27
120	Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction. Science China Chemistry, 2019, 62, 1365-1370.	8.2	61
121	Zirconiumâ€Regulationâ€Induced Bifunctionality in 3D Cobalt–Iron Oxide Nanosheets for Overall Water Splitting. Advanced Materials, 2019, 31, e1901439.	21.0	306
122	Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Materials Today, 2019, 31, 47-68.	14.2	311
123	Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 14483-14488.	10.3	73
124	Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy and Environmental Science, 2019, 12, 2345-2374.	30.8	88
125	Transition Metalâ€dinitrogen Complex Embedded Graphene for Nitrogen Reduction Reaction. ChemCatChem, 2019, 11, 2821-2827.	3.7	68
126	Rational design of three-phase interfaces for electrocatalysis. Nano Research, 2019, 12, 2055-2066.	10.4	135

#	Article	IF	CITATIONS
127	Engineering the electronic structure of Co3O4 by carbon-doping for efficient overall water splitting. Electrochimica Acta, 2019, 303, 316-322.	5.2	98
128	Tuning the Electrochemical Property of the Ultrafine Metalâ€oxide Nanoclusters by Iron Phthalocyanine as Efficient Catalysts for Energy Storage and Conversion. Energy and Environmental Materials, 2019, 2, 5-17.	12.8	32
129	Low-temperature plasma technology for electrocatalysis. Chinese Chemical Letters, 2019, 30, 826-838.	9.0	57
130	Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis. Materials Today Energy, 2019, 12, 250-268.	4.7	48
131	Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide. Small Methods, 2019, 3, 1800440.	8.6	155
132	In-situ evolution of active layers on commercial stainless steel for stable water splitting. Applied Catalysis B: Environmental, 2019, 248, 277-285.	20.2	99
133	Defectsâ€Induced Inâ€Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen Evolution Reaction. Small, 2019, 15, e1904903.	10.0	69
134	Defective glycerolatocobalt(<scp>ii</scp>) for enhancing the oxygen evolution reaction. Chemical Communications, 2019, 55, 12861-12864.	4.1	8
135	Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. Journal of Materials Chemistry A, 2019, 7, 24211-24216.	10.3	207
136	Chemically activated MoS2 for efficient hydrogen production. Nano Energy, 2019, 57, 535-541.	16.0	95
137	Defectâ€Based Singleâ€Atom Electrocatalysts. Small Methods, 2019, 3, 1800406.	8.6	139
138	Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 1019-1024.	13.8	224
139	BN Pairs Enriched Defective Carbon Nanosheets for Ammonia Synthesis with High Efficiency. Small, 2019, 15, e1805029.	10.0	164
140	Photoelectrochemical Synthesis of Ammonia on the Aerophilic-Hydrophilic Heterostructure with 37.8% Efficiency. CheM, 2019, 5, 617-633.	11.7	241
141	Efficient Metalâ€Free Electrocatalysts from Nâ€Doped Carbon Nanomaterials: Monoâ€Doping and Coâ€Doping. Advanced Materials, 2019, 31, e1805121.	21.0	329
142	Defect Engineering Strategies for Nitrogen Reduction Reactions under Ambient Conditions. Small Methods, 2019, 3, 1800331.	8.6	199
143	Defect engineering on electrocatalysts for gas-evolving reactions. Dalton Transactions, 2019, 48, 15-20.	3.3	48
144	Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes. Nano Letters, 2019, 19, 538-544.	9.1	113

#	Article	IF	CITATIONS
145	Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angewandte Chemie, 2019, 131, 1031-1036.	2.0	41
146	Transforming Co3O4 nanosheets into porous N-doped Co O nanosheets with oxygen vacancies for the oxygen evolution reaction. Journal of Energy Chemistry, 2019, 35, 24-29.	12.9	98
147	Rational Design of Transition Metalâ€Based Materials for Highly Efficient Electrocatalysis. Small Methods, 2019, 3, 1800211.	8.6	250
148	First-principles study of methanol adsorption on heteroatom-doped phosphorene. Chinese Chemical Letters, 2019, 30, 207-210.	9.0	15
149	Grapheneâ€Encapsulated FeS ₂ in Carbon Fibers as High Reversible Anodes for Na ⁺ /K ⁺ Batteries in a Wide Temperature Range. Small, 2019, 15, e1804740.	10.0	115
150	Recent Advances on Nonâ€precious Metal Porous Carbonâ€based Electrocatalysts for Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1775-1785.	3.4	146
151	Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Small, 2018, 14, e1800136.	10.0	341
152	Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn–Air Batteries. ACS Energy Letters, 2018, 3, 1183-1191.	17.4	456
153	Supramolecular bimetallogels: a nanofiber network for bimetal/nitrogen co-doped carbon electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 8227-8232.	10.3	24
154	3D Carbon Electrocatalysts In Situ Constructed by Defectâ€Rich Nanosheets and Polyhedrons from NaCl‣ealed Zeolitic Imidazolate Frameworks. Advanced Functional Materials, 2018, 28, 1705356.	14.9	233
155	Plasmaâ€Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Advanced Materials, 2018, 30, e1705850.	21.0	476
156	Hybrid thermoelectric battery electrode FeS2 study. Nano Energy, 2018, 45, 432-438.	16.0	35
157	Iron-Doped NiCoP Porous Nanosheet Arrays as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 571-579.	5.1	99
158	LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Science Bulletin, 2018, 63, 169-175.	9.0	60
159	Porous CoP nanosheets converted from layered double hydroxides with superior electrochemical activity for hydrogen evolution reactions at wide pH ranges. Chemical Communications, 2018, 54, 1465-1468.	4.1	120
160	N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Science China Materials, 2018, 61, 679-685.	6.3	54
161	Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Materials, 2018, 15, 22-30.	18.0	125
162	Efficient Encapsulation of Small S ₂₋₄ Molecules in MOF-Derived Flowerlike Nitrogen-Doped Microporous Carbon Nanosheets for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2018, 10, 9435-9443.	8.0	90

#	Article	IF	CITATIONS
163	Controllable Synthesis of CoS ₂ @N/Sâ€Codoped Porous Carbon Derived from ZIFâ€67 for as a Highly Efficient Catalyst for the Hydrogen Evolution Reaction. ChemCatChem, 2018, 10, 796-803.	3.7	43
164	In Situ Exfoliated, Nâ€Đoped, and Edgeâ€Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction. Advanced Functional Materials, 2018, 28, 1703363.	14.9	320
165	Engineering the coordination geometry of metal–organic complex electrocatalysts for highly enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 805-810.	10.3	69
166	Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting. Advanced Science, 2018, 5, 1800064.	11.2	515
167	Hierarchically porous MOF/polymer composites <i>via</i> interfacial nanoassembly and emulsion polymerization. Journal of Materials Chemistry A, 2018, 6, 20473-20479.	10.3	85
168	One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 24311-24316.	10.3	88
169	Enriched nucleation sites for Pt deposition on ultrathin WO ₃ nanosheets with unique interactions for methanol oxidation. Journal of Materials Chemistry A, 2018, 6, 23028-23033.	10.3	60
170	Quaternary bimetallic phosphosulphide nanosheets derived from prussian blue analogues: Origin of the ultra-high activity for oxygen evolution. Journal of Power Sources, 2018, 403, 90-96.	7.8	87
171	Defect Engineering of Cobalt-Based Materials for Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 15954-15969.	6.7	151
172	In Situ Activating Strategy to Significantly Boost Oxygen Electrocatalysis of Commercial Carbon Cloth for Flexible and Rechargeable Znâ€Air Batteries. Advanced Science, 2018, 5, 1800760.	11.2	91
173	A facile annealing strategy for achieving <i>in situ</i> controllable Cu ₂ O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes. Journal of Materials Chemistry A, 2018, 6, 18444-18448.	10.3	70
174	Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy, 2018, 53, 604-612.	16.0	197
175	Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nature Communications, 2018, 9, 3572.	12.8	159
176	Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 8827-8832.	2.0	37
177	Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 8691-8696.	13.8	337
178	Nitrogenâ€Ðoped CoP Electrocatalysts for Coupled Hydrogen Evolution and Sulfur Generation with Low Energy Consumption. Advanced Materials, 2018, 30, e1800140.	21.0	336
179	Recent Advances on Black Phosphorus for Energy Storage, Catalysis, and Sensor Applications. Advanced Materials, 2018, 30, e1800295.	21.0	215
180	Rapid cationic defect and anion dual-regulated layered double hydroxides for efficient water oxidation. Nanoscale, 2018, 10, 13638-13644.	5.6	74

#	Article	IF	CITATIONS
181	Crystallineâ€Water/Coordination Induced Formation of 3D Highly Porous Heteroatomâ€Doped Ultrathin Carbon Nanosheet Networks for Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 4562-4568.	3.7	16
182	Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 13790-13796.	10.3	144
183	Defectâ€Enhanced Charge Separation and Transfer within Protection Layer/Semiconductor Structure of Photoanodes. Advanced Materials, 2018, 30, e1801773.	21.0	81
184	A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy and Environmental Science, 2017, 10, 893-899.	30.8	412
185	Efficient and Durable Bifunctional Oxygen Catalysts Based on NiFeO@MnO _{<i>x</i>} Core–Shell Structures for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8121-8133.	8.0	76
186	Three-dimensional hierarchical MoS2/CoS2 heterostructure arrays for highly efficient electrocatalytic hydrogen evolution. Green Energy and Environment, 2017, 2, 134-141.	8.7	64
187	In Situ Exfoliated, Edgeâ€Rich, Oxygenâ€Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Advanced Materials, 2017, 29, 1606207.	21.0	532
188	Synthesis of electrocatalytically functional carbon honeycombs through cooking with molecule precursors. International Journal of Hydrogen Energy, 2017, 42, 6472-6481.	7.1	15
189	Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 9412-9417.	10.3	80
190	Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie, 2017, 129, 5961-5965.	2.0	84
191	Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 5867-5871.	13.8	808
192	Defect Chemistry of Nonpreciousâ€Metal Electrocatalysts for Oxygen Reactions. Advanced Materials, 2017, 29, 1606459.	21.0	1,260
193	Prospects of fuel cell technologies. National Science Review, 2017, 4, 163-166.	9.5	238
194	Combâ€like polymer with sulfo groups and its dispersion and rheological properties in aqueous ceramic suspensions. Journal of Applied Polymer Science, 2017, 134, .	2.6	5
195	p-Type SnO thin layers on n-type SnS ₂ nanosheets with enriched surface defects and embedded charge transfer for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 512-518.	10.3	97
196	Waterâ€Plasmaâ€Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Advanced Materials, 2017, 29, 1701546.	21.0	539
197	Few‣ayer Black Phosphorus Nanosheets as Electrocatalysts for Highly Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2017, 7, 1700396.	19.5	301
198	N-doped nanoporous Co ₃ O ₄ nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 2017, 28, 165402.	2.6	105

#	Article	IF	CITATIONS
199	Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy, 2017, 41, 417-425.	16.0	386
200	Iron phosphide/N, P-doped carbon nanosheets as highly efficient electrocatalysts for oxygen reduction reaction over the whole pH range. Electrochimica Acta, 2017, 254, 280-286.	5.2	52
201	Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chemical Communications, 2017, 53, 11778-11781.	4.1	180
202	In situ growth of cobalt@cobalt-borate core–shell nanosheets as highly-efficient electrocatalysts for oxygen evolution reaction in alkaline/neutral medium. Nanoscale, 2017, 9, 16059-16065.	5.6	64
203	On-site evolution of ultrafine ZnO nanoparticles from hollow metal–organic frameworks for advanced lithium ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 22512-22518.	10.3	77
204	Filling the oxygen vacancies in Co ₃ O ₄ with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy and Environmental Science, 2017, 10, 2563-2569.	30.8	859
205	Metalâ€Free Carbon Materials for CO ₂ Electrochemical Reduction. Advanced Materials, 2017, 29, 1701784.	21.0	558
206	Electrocatalysis: Hierarchical Co(OH)F Superstructure Built by Lowâ€Dimensional Substructures for Electrocatalytic Water Oxidation (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	21.0	0
207	In situ evolution of highly dispersed amorphous CoO _x clusters for oxygen evolution reaction. Nanoscale, 2017, 9, 11969-11975.	5.6	138
208	Bifunctional MOFâ€Đerived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters. Advanced Functional Materials, 2017, 27, 1701971.	14.9	156
209	Atomic‣cale CoO <i>_x</i> Species in Metal–Organic Frameworks for Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1702546.	14.9	327
210	Rapidly engineering the electronic properties and morphological structure of NiSe nanowires for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 25494-25500.	10.3	73
211	Sandwiched Thinâ€Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithiumâ€ion Battery. Small, 2017, 13, 1700758.	10.0	145
212	N, O Co-doped carbon felt for high-performance all-vanadium redox flow battery. International Journal of Hydrogen Energy, 2017, 42, 7177-7185.	7.1	65
213	In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO ₄ ^{2â^'} intercalated layered double hydroxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 87-91.	10.3	157
214	Ar Plasma Exfoliated Nickel Iron Layered Double Hydroxide Nanosheets into Ultrathin Nanosheets as Highly-Efficient Electrocatalysts for Water Oxidation. ECS Transactions, 2017, 80, 1029-1037.	0.5	5
215	Hierarchical Co(OH)F Superstructure Built by Lowâ€Dimensional Substructures for Electrocatalytic Water Oxidation. Advanced Materials, 2017, 29, 1700286.	21.0	227
216	The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction. Journal of Energy Chemistry, 2017, 26, 1136-1139.	12.9	56

#	Article	IF	CITATIONS
217	Bridging Covalently Functionalized Black Phosphorus on Graphene for High-Performance Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 36849-36856.	8.0	129
218	Graphitic C ₃ N ₄ as a powerful catalyst for all-vanadium redox flow batteries. RSC Advances, 2016, 6, 66368-66372.	3.6	28
219	Sulfur-Doped Fe/N/C Nanosheets as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19379-19385.	8.0	172
220	Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co ₃ O ₄ for oxygen electrocatalysis. Chemical Communications, 2016, 52, 9727-9730.	4.1	291
221	Plasmaâ€Engraved Co ₃ O ₄ Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie, 2016, 128, 5363-5367.	2.0	472
222	Efficient plasma-enhanced method for layered LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ cathodes with sulfur atom-scale modification for superior-performance Li-ion batteries. Nanoscale, 2016, 8, 11234-11240.	5.6	38
223	Charge transfer induced activity of graphene for oxygen reduction. Nanotechnology, 2016, 27, 185402.	2.6	19
224	Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 9370-9374.	10.3	85
225	In-situ Formation of Ni3S2 Interlayer between MoS2 and Ni Foam for High-rate and Highly-durable Lithium Ion Batteries. Electrochimica Acta, 2016, 206, 52-60.	5.2	22
226	ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 15836-15840.	10.3	199
227	Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angewandte Chemie - International Edition, 2016, 55, 13849-13853.	13.8	269
228	Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angewandte Chemie, 2016, 128, 14053-14057.	2.0	92
229	Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochimica Acta, 2016, 219, 592-603.	5.2	151
230	Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2016, 52, 13008-13011.	4.1	87
231	Mn–N-C Nanoreactor Prepared through Heating Metalloporphyrin Supported in Mesoporous Hollow Silica Spheres. ACS Applied Materials & Interfaces, 2016, 8, 26809-26816.	8.0	18
232	A class of transition metal-oxide@MnOx core–shell structured oxygen electrocatalysts for reversible O2 reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 13881-13889.	10.3	42
233	Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13726-13730.	10.3	131
234	Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chemical Communications, 2016, 52, 12614-12617.	4.1	251

#	Article	IF	CITATIONS
235	Low-temperature synthesis of mesoporous ZnTiO ₃ –graphene composite for the removal of norfloxacin in aqueous solution. RSC Advances, 2016, 6, 103822-103829.	3.6	11
236	Recycled LiCoO ₂ in spent lithium-ion battery as an oxygen evolution electrocatalyst. RSC Advances, 2016, 6, 103541-103545.	3.6	18
237	In situ formation of bioactive calcium titanate coatings on titanium screws for medical implants. RSC Advances, 2016, 6, 53182-53187.	3.6	19
238	The enhancement of polysulfide absorbsion in Li S batteries by hierarchically porous CoS2/carbon paper interlayer. Journal of Power Sources, 2016, 325, 71-78.	7.8	140
239	Nanoparticle-Stacked Porous Nickel–Iron Nitride Nanosheet: A Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 18652-18657.	8.0	287
240	Plasmaâ€Engraved Co ₃ O ₄ Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 5277-5281.	13.8	1,646
241	Etched and doped Co ₉ S ₈ /graphene hybrid for oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 1320-1326.	30.8	774
242	Directional coalescence growth of ultralong Au ₉₃ Pt ₇ alloy nanowires and their superior electrocatalytic performance in ethanol oxidation. Chemical Communications, 2016, 52, 5164-5166.	4.1	26
243	Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 5260-5268.	7.1	44
244	The origin of the enhanced performance of nitrogen-doped MoS ₂ in lithium ion batteries. Nanotechnology, 2016, 27, 175402.	2.6	58
245	Facile synthesis of nitrogen and sulfur co-doped graphene-like carbon materials using methyl blue/montmorillonite composites. Microporous and Mesoporous Materials, 2016, 225, 137-143.	4.4	33
246	Carbon-coated MoS ₂ nanosheets as highly efficient electrocatalysts for the hydrogen evolution reaction. Nanotechnology, 2016, 27, 045402.	2.6	32
247	Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2016, 52, 2764-2767.	4.1	547
248	Plasma-enhanced low-temperature solid-state synthesis of spinel LiMn ₂ O ₄ with superior performance for lithium-ion batteries. Green Chemistry, 2016, 18, 662-666.	9.0	27
249	Homogenous Core–Shell Nitrogenâ€Doped Carbon Nanotubes for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1892-1896.	3.4	4
250	Hierarchically Porous Ni3S2 Nanorod Array Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. Electrochimica Acta, 2015, 174, 297-301.	5.2	316
251	A separator modified by high efficiency oxygen plasma for lithium ion batteries with superior performance. RSC Advances, 2015, 5, 92995-93001.	3.6	14
252	Plasma-Assisted Sulfur Doping of LiMn ₂ O ₄ for High-Performance Lithium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 28776-28782.	3.1	52

#	Article	IF	CITATIONS
253	NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 280, 640-648.	7.8	112
254	One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS 2 as high performance anode materials for lithium-ion batteries. Electrochimica Acta, 2015, 177, 298-303.	5.2	47
255	A simple approach to the synthesis of BCN graphene with high capacitance. Nanotechnology, 2015, 26, 045402.	2.6	69
256	Platinum Nanoparticles Supported on Nitrobenzene-Functionalized Multiwalled Carbon Nanotube as Efficient Electrocatalysts for Methanol Oxidation Reaction. Electrochimica Acta, 2015, 157, 46-53.	5.2	28
257	Highly nitrogen doped carbon nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2015, 51, 11791-11794.	4.1	52
258	Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors. Nanotechnology, 2015, 26, 325401.	2.6	37
259	N-, P- and S-tridoped graphene as metal-free electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2015, 753, 21-27.	3.8	67
260	Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor. Scientific Reports, 2015, 5, 11792.	3.3	25
261	Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage. Applied Surface Science, 2015, 346, 497-502.	6.1	71
262	Oxidized carbon nanotubes as an efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Advances, 2015, 5, 41901-41904.	3.6	34
263	Plasma-engineered MoS ₂ thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2015, 51, 7470-7473.	4.1	263
264	Simultaneous Pt deposition and nitrogen doping of graphene as efficient and durable electrocatalysts for methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 14371-14377.	7.1	37
265	Phosphorus-doped CoS ₂ nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2015, 51, 14160-14163.	4.1	239
266	Enhanced Cycling Stability of Lithium–Sulfur batteries by Electrostatic-Interaction. Electrochimica Acta, 2015, 182, 884-890.	5.2	22
267	Plasma-assisted highly efficient synthesis of Li(Ni1/3Co1/3Mn1/3)O2 cathode materials with superior performance for Li-ion batteries. RSC Advances, 2015, 5, 75145-75148.	3.6	12
268	Ultrathin Wrinkled N-Doped Carbon Nanotubes for Noble-Metal Loading and Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2015, 7, 20507-20512.	8.0	17
269	Oxygen plasma modified separator for lithium sulfur battery. RSC Advances, 2015, 5, 79473-79478.	3.6	39
270	SiO ₂ -directed surface control of hierarchical MoS ₂ microspheres for stable lithium-ion batteries. RSC Advances, 2015, 5, 74012-74016.	3.6	6

#	Article	IF	CITATIONS
271	Templated synthesis of nitrogen-doped graphene-like carbon materials using spent montmorillonite. RSC Advances, 2015, 5, 7522-7528.	3.6	34
272	Sulfurâ€Doped Graphene Derived from Cycled Lithium–Sulfur Batteries as a Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2015, 54, 1888-1892.	13.8	328
273	Sulfur-graphene composite with molybdenum particles for stabilizing lithium–sulfur batteries. RSC Advances, 2015, 5, 2096-2099.	3.6	11
274	One-step hydrothermal synthesis of NiCo ₂ S ₄ –rGO as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 20990-20995.	10.3	73
275	Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane. Angewandte Chemie - International Edition, 2014, 53, 10804-10808.	13.8	410
276	One-Pot Synthesis of Fe ₂ O ₃ Nanoparticles on Nitrogen-Doped Graphene as Advanced Supercapacitor Electrode Materials. Journal of Physical Chemistry C, 2014, 118, 17231-17239.	3.1	288
277	Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction. Chemical Communications, 2014, 50, 10672.	4.1	78
278	One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2014, 50, 4839-4842.	4.1	302
279	Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy, 2013, 2, 530-536.	16.0	196
280	Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors. Journal of Materials Chemistry A, 2013, 1, 5279.	10.3	123
281	Graphene ribbon-supported Pd nanoparticles as highly durable, efficient electrocatalysts for formic acid oxidation. Electrochimica Acta, 2013, 88, 565-570.	5.2	30
282	Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries. Journal of Physical Chemistry Letters, 2012, 3, 2164-2167.	4.6	230
283	Vertically Aligned BCN Nanotubes with High Capacitance. ACS Nano, 2012, 6, 5259-5265.	14.6	204
284	Boron-doped carbon nanotube-supported Pt nanoparticles with improved CO tolerance for methanol electro-oxidation. Physical Chemistry Chemical Physics, 2012, 14, 13910.	2.8	58
285	BCN Graphene as Efficient Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2012, 51, 4209-4212.	13.8	1,119
286	Nanomaterials for Proton Exchange Membrane Fuel Cells. Green Energy and Technology, 2011, , 393-424.	0.6	2
287	Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano, 2011, 5, 6202-6209.	14.6	672
288	Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells. Physical Chemistry Chemical Physics, 2011, 13, 6883.	2.8	144

#	Article	IF	CITATIONS
289	Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chemical Communications, 2011, 47, 11689.	4.1	177
290	Polyelectrolyte Functionalized Carbon Nanotubes as Efficient Metal-free Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 5182-5185.	13.7	678
291	Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes. Journal of Nanoparticle Research, 2011, 13, 2973-2979.	1.9	2
292	Vertically Aligned BCN Nanotubes as Efficient Metalâ€Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Coâ€Doping with Boron and Nitrogen. Angewandte Chemie - International Edition, 2011, 50, 11756-11760.	13.8	725
293	Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells. Electrochimica Acta, 2011, 56, 1563-1569.	5.2	108
294	Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochimica Acta, 2011, 56, 3338-3344.	5.2	170
295	Direct Alcohol Fuel Cell. International Journal of Electrochemistry, 2011, 2011, 1-1.	2.4	3
296	Synthesis of Pt and Pd nanosheaths on multi-walled carbon nanotubes as potential electrocatalysts of low temperature fuel cells. Electrochimica Acta, 2010, 55, 7652-7658.	5.2	33
297	Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochemistry Communications, 2010, 12, 1646-1649.	4.7	88
298	CeO[sub 2] Promoted Electro-Oxidation of Formic Acid on Pdâ^•C Nano-Electrocatalysts. Electrochemical and Solid-State Letters, 2009, 12, B73.	2.2	34
299	Electrochemical properties of ball-milled LaMg12–Ni composites containing carbon nanotubes. International Journal of Hydrogen Energy, 2009, 34, 1444-1449.	7.1	11
300	Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Applied Catalysis B: Environmental, 2009, 91, 507-515.	20.2	319
301	Lower Critical Solution Temperature Behavior of Poly(N-(2-ethoxyethyl)acrylamide) as Compared with Poly(N-isopropylacrylamide). Journal of Physical Chemistry B, 2009, 113, 12456-12461.	2.6	31
302	Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells. Journal of Physical Chemistry C, 2009, 113, 18935-18945.	3.1	239
303	Controlled synthesis of dendritic Au@Pt core–shell nanomaterials for use as an effective fuel cell electrocatalyst. Nanotechnology, 2009, 20, 025605.	2.6	117
304	Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. Electrochemistry Communications, 2008, 10, 961-964.	4.7	103
305	Pd/Pt core–shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochemistry Communications, 2008, 10, 1575-1578.	4.7	150
306	PtRu Nanoparticles Supported on 1-Aminopyrene-Functionalized Multiwalled Carbon Nanotubes and Their Electrocatalytic Activity for Methanol Oxidation. Langmuir, 2008, 24, 10505-10512.	3.5	205

#	Article	IF	CITATIONS
307	Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation. Nanotechnology, 2008, 19, 265601.	2.6	138
308	Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells. Nanotechnology, 2008, 19, 455602.	2.6	44
309	Development of PtRu Electrocatalysts on 1-Aminopyrene Functionalized MWCNTs for Direct Methanol Fuel Cells. ECS Transactions, 2008, 16, 467-472.	0.5	1