Malcolm A Leissring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1045873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia, 2022, 65, 1375-1389.	6.3	3
2	Targeting Insulin-Degrading Enzyme in Insulin Clearance. International Journal of Molecular Sciences, 2021, 22, 2235.	4.1	31
3	Hydroxypyridinethione Inhibitors of Human Insulinâ€Degrading Enzyme. ChemMedChem, 2021, 16, 1776-1788.	3.2	5
4	Insulin-Degrading Enzyme: Paradoxes and Possibilities. Cells, 2021, 10, 2445.	4.1	15
5	Effects of Fasting and Feeding on Transcriptional and Posttranscriptional Regulation of Insulin-Degrading Enzyme in Mice. Cells, 2021, 10, 2446.	4.1	10
6	Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines, 2021, 9, 86.	3.2	35
7	Cathepsin D: A Candidate Link between Amyloid β-protein and Tauopathy in Alzheimer Disease. Journal of Experimental Neurology, 2021, 2, 10-15.	0.5	4
8	Hepatic insulin-degrading enzyme regulates glucose and insulin homeostasis in diet-induced obese mice. Metabolism: Clinical and Experimental, 2020, 113, 154352.	3.4	25
9	Quantitative, High-Throughput Assays for Proteolytic Degradation of Amylin. Methods and Protocols, 2020, 3, 81.	2.0	3
10	Cathepsin D regulates cerebral Aβ42/40 ratios via differential degradation of Aβ42 and Aβ40. Alzheimer's Research and Therapy, 2020, 12, 80.	6.2	36
11	Pancreatic β-cell-specific deletion of insulin-degrading enzyme leads to dysregulated insulin secretion and β-cell functional immaturity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E805-E819.	3.5	23
12	Peptidic inhibitors of insulin-degrading enzyme with potential for dermatological applications discovered via phage display. PLoS ONE, 2018, 13, e0193101.	2.5	17
13	Development and Characterization of Quantitative, High-Throughput-Compatible Assays for Proteolytic Degradation of Clucagon. SLAS Discovery, 2018, 23, 1060-1069.	2.7	7
14	Liver-specific ablation of insulin-degrading enzyme causes hepatic insulin resistance and glucose intolerance, without affecting insulin clearance in mice. Metabolism: Clinical and Experimental, 2018, 88, 1-11.	3.4	49
15	Inhibition of Insulin-Degrading Enzyme Does Not Increase Islet Amyloid Deposition in Vitro. Endocrinology, 2016, 157, 3462-3468.	2.8	5
16	Aβ-Degrading Proteases: Therapeutic Potential in Alzheimer Disease. CNS Drugs, 2016, 30, 667-675.	5.9	22
17	Age and Its Association with Low Insulin and High Amyloid-β Peptides in Blood. Journal of Alzheimer's Disease, 2015, 49, 129-137.	2.6	12
18	Selective Targeting of Extracellular Insulin-Degrading Enzyme by Quasi-Irreversible Thiol-Modifying Inhibitors. ACS Chemical Biology, 2015, 10, 2716-2724.	3.4	22

MALCOLM A LEISSRING

#	Article	IF	CITATIONS
19	Aβ degradationââ,¬â€ŧhe inside story. Frontiers in Aging Neuroscience, 2014, 6, 229.	3.4	5
20	The Blood Glucose-lowering Effect of Racecadotril is not Attributable to Inhibition of Insulin-degrading Enzyme. Hormone and Metabolic Research, 2014, 46, 73-74.	1.5	0
21	Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature, 2014, 511, 94-98.	27.8	207
22	Regulation of distinct pools of amyloid β-protein by multiple cellular proteases. Alzheimer's Research and Therapy, 2013, 5, 37.	6.2	18
23	Optimization of Peptide Hydroxamate Inhibitors of Insulin-Degrading Enzyme Reveals Marked Substrate-Selectivity. Journal of Medicinal Chemistry, 2013, 56, 2246-2255.	6.4	51
24	Proteolytic Degradation of Amyloid Â-Protein. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006379-a006379.	6.2	293
25	ldentification of BACE2 as an avid ß-amyloid-degrading protease. Molecular Neurodegeneration, 2012, 7, 46.	10.8	54
26	Characterization of Insulin Degrading Enzyme and Other Amyloid-β Degrading Proteases in Human Serum: A Role in Alzheimer's Disease?. Journal of Alzheimer's Disease, 2012, 29, 329-340.	2.6	26
27	Deletion of Insulin-Degrading Enzyme Elicits Antipodal, Age-Dependent Effects on Glucose and Insulin Tolerance. PLoS ONE, 2011, 6, e20818.	2.5	89
28	Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin. PLoS ONE, 2010, 5, e10504.	2.5	91
29	Accelerated Lipofuscinosis and Ubiquitination in Granulin Knockout Mice Suggest a Role for Progranulin in Successful Aging. American Journal of Pathology, 2010, 177, 311-324.	3.8	262
30	Biochemical and immunohistochemical analysis of an Alzheimer's disease mouse model reveals the presence of multiple cerebral AÎ ² assembly forms throughout life. Neurobiology of Disease, 2009, 36, 293-302.	4.4	117
31	Development of monoclonal antibodies and quantitative ELISAs targeting insulin-degrading enzyme. Molecular Neurodegeneration, 2009, 4, 39.	10.8	8
32	Insulin-degrading enzyme is exported via an unconventional protein secretion pathway. Molecular Neurodegeneration, 2009, 4, 4.	10.8	76
33	Small-Molecule Activators of Insulin-Degrading Enzyme Discovered through High-Throughput Compound Screening. PLoS ONE, 2009, 4, e5274.	2.5	63
34	Aggregation and catabolism of disease-associated intra-Aβ mutations: reduced proteolysis of AβA21G by neprilysin. Neurobiology of Disease, 2008, 31, 442-450.	4.4	88
35	The Catalytic Domain of Insulin-degrading Enzyme Forms a Denaturant-resistant Complex with Amyloid β Peptide. Journal of Biological Chemistry, 2008, 283, 17039-17048.	3.4	34
36	The Al²Cs of Al²-cleaving Proteases. Journal of Biological Chemistry, 2008, 283, 29645-29649.	3.4	79

MALCOLM A LEISSRING

#	Article	IF	CITATIONS
37	Molecular basis for the thiol sensitivity of insulin-degrading enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9582-9587.	7.1	55
38	Decreased Catalytic Activity of the Insulin-degrading Enzyme in Chromosome 10-Linked Alzheimer Disease Families. Journal of Biological Chemistry, 2007, 282, 7825-7832.	3.4	89
39	Structure of Substrate-free Human Insulin-degrading Enzyme (IDE) and Biophysical Analysis of ATP-induced Conformational Switch of IDE. Journal of Biological Chemistry, 2007, 282, 25453-25463.	3.4	108
40	Loss of Neprilysin Function Promotes Amyloid Plaque Formation and Causes Cerebral Amyloid Angiopathy. American Journal of Pathology, 2007, 171, 241-251.	3.8	157
41	AÎ ² Degradation. , 2007, , 157-178.		1
42	Enzyme target to latch on to. Nature, 2006, 443, 761-762.	27.8	24
43	Proteolytic Degradation of the Amyloid β-Protein: The Forgotten Side of Alzheimers Disease. Current Alzheimer Research, 2006, 3, 431-435.	1.4	24
44	Alternative Splicing of Human Insulin-Degrading Enzyme Yields a Novel Isoform with a Decreased Ability To Degrade Insulin and Amyloid β-Proteinâ€. Biochemistry, 2005, 44, 6513-6525.	2.5	78
45	Live discussion: How the other half lives – or the what, how, and where, of the AβPP intracellular domain1. Journal of Alzheimer's Disease, 2004, 6, 193-199.	2.6	0
46	Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochemical Journal, 2004, 383, 439-446.	3.7	152
47	Partial Loss-of-Function Mutations in Insulin-Degrading Enzyme that Induce Diabetes also Impair Degradation of Amyloid β-Protein. American Journal of Pathology, 2004, 164, 1425-1434.	3.8	233
48	Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death. Neuron, 2003, 40, 1087-1093.	8.1	665
49	Kinetics of Amyloid β-Protein Degradation Determined by Novel Fluorescence- and Fluorescence Polarization-based Assays. Journal of Biological Chemistry, 2003, 278, 37314-37320.	3.4	106
50	A physiologic signaling role for the γ-secretase-derived intracellular fragment of APP. Proceedings of the United States of America, 2002, 99, 4697-4702.	7.1	261
51	Inclusion body myositis-like phenotype induced by transgenic overexpression of βAPP in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6334-6339.	7.1	103
52	Subcellular Mechanisms of Presenilin-Mediated Enhancement of Calcium Signaling. Neurobiology of Disease, 2001, 8, 469-478.	4.4	55
53	Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nature Biotechnology, 2001, 19, 645-649.	17.5	92
54	Regional Hypomyelination and Dysplasia in Transgenic Mice with Astrocyte-Directed Expression of Interferon-I ³ . Journal of Molecular Neuroscience, 2000, 15, 45-60.	2.3	73

MALCOLM A LEISSRING

#	Article	IF	CITATIONS
55	Capacitative Calcium Entry Deficits and Elevated Luminal Calcium Content in Mutant Presenilin-1 Knockin Mice. Journal of Cell Biology, 2000, 149, 793-798.	5.2	313
56	Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8590-8593.	7.1	89
57	Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences, 2000, 23, 222-229.	8.6	469
58	Presenilin-2 Mutations Modulate Amplitude and Kinetics of Inositol 1,4,5-Trisphosphate-mediated Calcium Signals. Journal of Biological Chemistry, 1999, 274, 32535-32538.	3.4	126
59	Alzheimer's Presenilinâ€1 Mutation Potentiates Inositol 1,4,5â€Trisphosphateâ€Mediated Calcium Signaling in <i>Xenopus</i> . Journal of Neurochemistry, 1999, 72, 1061-1068.	3.9	121
60	Alzheimer's Presenilin-1 Mutation Potentiates Inositol 1,4,5-Trisphosphate-Mediated Calcium Signaling in Xenopus. Journal of Neurochemistry, 1999, 72, 1061.	3.9	162
61	Herpes Simplex Virus Infections and Alzheimer??s Disease. Drugs and Aging, 1998, 13, 193-198.	2.7	15
62	Presenilin-1 Immunoreactivity Is Localized Intracellularly in Alzheimer's Disease Brain, but Not Detected in Amyloid Plaques. Experimental Neurology, 1997, 143, 37-44.	4.1	26