Cai-Ming Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1045515/publications.pdf

Version: 2024-02-01

53794 85541 7,140 223 45 citations h-index papers

g-index 226 226 226 5644 docs citations times ranked citing authors all docs

71

#	Article	IF	Citations
1	The First Organic–Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr ₃ . Advanced Materials, 2015, 27, 3942-3946.	21.0	263
2	Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. Advanced Materials, 2006, 18, 65-68.	21.0	252
3	A novel two-dimensional mixed molybdenumâ€"vanadium polyoxometalate with two types of cobalt(ii) complex fragments as bridgesElectronic supplementary information (ESI) available: synthesis and characterization of 1. Fig. S1: view of layers down the a axis of 1. Fig. S2: plots of ‡T and ‡â€"1 vs. T for 1. See http://www.rsc.org/suppdata/cc/b2/b202540i/. Chemical Communications. 2002 1416-1417.	4.1	219
4	Nanoscale Homochiral <i>C</i> ₃ -Symmetric Mixed-Valence Manganese Cluster Complexes with Both Ferromagnetic and Ferroelectric Properties. Journal of the American Chemical Society, 2010, 132, 4044-4045.	13.7	167
5	Dehydrogenative coupling of phenanthroline under hydrothermal conditions: crystal structure of a novel layered vanadate complex constructed of 4,8,10-net sheets: [(2,2′-biphen)Co]V3O8.5. Chemical Communications, 2001, , 1670-1671.	4.1	161
6	A Cationâ€Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 6688-6692.	13.8	150
7	Fine-Tuning Ligand to Modulate the Magnetic Anisotropy in a Carboxylate-Bridged Dy ₂ Single-Molecule Magnet System. Inorganic Chemistry, 2016, 55, 5578-5584.	4.0	129
8	Field-Induced Single-Ion Magnets Based on Enantiopure Chiral \hat{l}^2 -Diketonate Ligands. Inorganic Chemistry, 2013, 52, 8933-8940.	4.0	122
9	Metamagnetism and slow magnetic dynamics in an antiferromagnet composed of cobalt(ii) chains with mixed azide–carboxylate bridges. Chemical Communications, 2011, 47, 1815-1817.	4.1	107
10	One- and Two-Dimensional Coordination Polymers Constructed from Bicapped Keggin Mixed Molybdenumâ°'Vanadium Heteropolyoxoanions and Polynuclear Copper(I) Clusters Bridged by Asymmetrical Bipyridine (2,4â€⁻-bipy and 2,3â€⁻-bipy) Ligands. Crystal Growth and Design, 2006, 6, 524-529.	3.0	106
11	Hydrothermal Syntheses and Crystal Structures of [MoVI6MoV2VIV8O40(PO4)[Co(phen)2(H2O)]2}[Co2(phen)2(OH)2(H2O)4]1/2 and [MoVI5MoV3VIV8O40(PO4)[Co(phen)(H2O)]2}[Co(phen)3]Â-1.5H2O. Crystal Growth and Design, 2003,	3.0	95
12	Modulation of Homochiral Dy ^{III} Complexes: Singleâ€Molecule Magnets with Ferroelectric Properties. Chemistry - A European Journal, 2012, 18, 14632-14637.	3.3	94
13	Antiferro- and Ferromagnetic Interactions in Mn(II), Co(II), and Ni(II) Compounds with Mixed Azideâ°'Carboxylate Bridges. Inorganic Chemistry, 2009, 48, 6142-6151.	4.0	92
14	Evolution from linear tetranuclear clusters into one-dimensional chains of Dy(<scp>iii</scp>) single-molecule magnets with an enhanced energy barrier. Inorganic Chemistry Frontiers, 2017, 4, 1149-1156.	6.0	91
15	A Unique 3D Alternating Ferro- and Antiferromagnetic Manganese Azide System with Threefold Interpenetrating (10,3) Nets. Angewandte Chemie - International Edition, 2004, 43, 990-994.	13.8	90
16	3D Supramolecular Array Assembled by Cross-like Arrangement of 1D Sandwich Mixed Molybdenumâ°'Vanadium Polyoxometalate Bridged Coordination Polymer Chains:  Hydrothermal Synthesis and Crystal Structure of {[MoVI5MoV3VIV8O40(PO4)][Ni(en)2]}[Ni(en)2]2·4H2O. Crystal Growth and Design, 2005, 5, 1639-1642.	3.0	89
17	S-heterocyclic annelated perylene bisimide: synthesis and co-crystal with pyrene. Chemical Communications, 2006, , 4587.	4.1	77
18	Tautomeric effect of hydrazone Schiff bases in tetranuclear Cu(ii) complexes: magnetism and catalytic activity towards mild hydrocarboxylation of alkanes. Dalton Transactions, 2013, 42, 16578.	3.3	76

#	Article	IF	CITATIONS
19	Hydrothermal Synthesis and Crystal Structure of a Novel Two-Dimensional Vanadium Oxide Complex with a 6,14-Net Sinusoidal Ruffling Anionic Layer:  [Ni(phen)2V4O11] (phen = 1,10-Phenanthroline). Inorganic Chemistry, 2002, 41, 140-143.	4.0	74
20	Crystal structure and some properties of a novel potent Cu2Zn2SOD model schiff base copper(II) complex â^—[Cu(bppn)](ClO4)2â^—2 · H2O. Polyhedron, 1996, 15, 4565-4571.	2.2	71
21	1D Coordination Polymers Constructed from antiâ~anti Carboxylato-Bridged Mnlll3O(Brppz)3 Units: From Long-Range Magnetic Ordering to Single-Chain Magnet Behaviors. Inorganic Chemistry, 2009, 48, 4980-4987.	4.0	71
22	Three-Dimensional Eight- or Four-Connected Metalâ^'Organic Frameworks Tuned by Hydrothermal Temperatures. Crystal Growth and Design, 2007, 7, 1312-1317.	3.0	70
23	3d–4f heterometallic trinuclear complexes derived from amine-phenol tripodal ligands exhibiting magnetic and luminescent properties. Dalton Transactions, 2017, 46, 1153-1162.	3.3	69
24	Syntheses, Crystal Structures, and Magnetic Properties of Two p-tert-Butylsulfonylcalix[4]arene Supported Cluster Complexes with a Totally Disordered Ln4(OH)4 Cubane Core. Crystal Growth and Design, 2012, 12, 2948-2954.	3.0	66
25	Dinuclear Mn(ii,ii) complexes: magnetic properties and microwave assisted oxidation of alcohols. Dalton Transactions, 2014, 43, 3966.	3.3	65
26	Coordination Complexes of 2-(4-Quinolyl)nitronyl Nitroxide with $M(hfac)2[M = Mn(II), Co(II), and Cu(II)]$: Â Syntheses, Crystal Structures, and Magnetic Characterization. Inorganic Chemistry, 2004, 43, 4091-4098.	4.0	62
27	A single-molecule magnet featuring a parallelogram [Dy4(OCH2–)4] core and two magnetic relaxation processes. Dalton Transactions, 2013, 42, 14813.	3.3	62
28	Luminescent, magnetic and ferroelectric properties of noncentrosymmetric chain-like complexes composed of nine-coordinate lanthanide ions. Dalton Transactions, 2013, 42, 15317.	3.3	62
29	One-Dimensional Homochiral Cyano-Bridged Heterometallic Chain Coordination Polymers with Metamagnetic or Ferroelectric Properties. Inorganic Chemistry, 2009, 48, 10177-10185.	4.0	61
30	Heptanuclear 3d–4f cluster complexes with a coaxial double-screw-propeller topology and diverse magnetic properties. Dalton Transactions, 2010, 39, 11325.	3.3	60
31	A 3D MOF constructed from dysprosium(<scp>iii</scp>) oxalate and capping ligands: ferromagnetic coupling and field-induced two-step magnetic relaxation. Chemical Communications, 2016, 52, 4804-4807.	4.1	60
32	Spin Glass Behaviour in a 1D Mixed Molybdenum-Vanadium Heteropolyoxometalate-Bridged Coordination Polymer. European Journal of Inorganic Chemistry, 2004, 2004, 4774-4779.	2.0	58
33	Anion Effects on Lanthanide(III) Tetrazole-1-acetate Dinuclear Complexes Showing Slow Magnetic Relaxation and Photofluorescent Emission. Inorganic Chemistry, 2016, 55, 3738-3749.	4.0	56
34	4-(N,N-Dimethylamine)benzonitrile (DMABN) derivatives with boronic acid and boronate groups: new fluorescent sensors for saccharides and fluoride ion. Journal of Materials Chemistry, 2007, 17, 1964.	6.7	55
35	Trinuclear Cu ^{II} Structural Isomers: Coordination, Magnetism, Electrochemistry and Catalytic Activity towards the Oxidation of Alkanes. European Journal of Inorganic Chemistry, 2015, 2015, 3959-3969.	2.0	54
36	Chiral Induction in the Ionothermal Synthesis of a 3D Chiral Heterometallic Metal–Organic Framework Constructed from Achiral 1,4-Naphthalenedicarboxylate. Inorganic Chemistry, 2013, 52, 6773-6775.	4.0	53

#	Article	IF	Citations
37	A novel bimetallic cage complex constructed from six V4Co pentatomic rings: hydrothermal synthesis and crystal structure of [(2,2′-Py2NH)2Co]3V8O23. Chemical Communications, 2001, , 1636-1637.	4.1	51
38	Unprecedented Self-Catenated Eight-Connected Network Based on Novel Azide-Bridged Tetramanganese(II) Clusters. Inorganic Chemistry, 2009, 48, 789-791.	4.0	50
39	The first case of an actinide polyrotaxane incorporating cucurbituril: a unique  dragon-like' twist induced by a specific coordination pattern of uranium. Chemical Communications, 2014, 50, 3612-3615.	4.1	50
40	Family of Chiral Zn ^{II} â€"Ln ^{III} (Ln = Dy and Tb) Heterometallic Complexes Derived from the Amineâ€"Phenol Ligand Showing Multifunctional Properties. Inorganic Chemistry, 2020, 59, 2811-2824.	4.0	50
41	Enhanced single-ion magnetic and ferroelectric properties of mononuclear Dy(<scp>iii</scp>) enantiomeric pairs through the coordination role of chiral ligands. Chemical Communications, 2017, 53, 3998-4001.	4.1	49
42	New Skeletal 3D Polymeric Inorganic Cluster [W4S16Cu16Cl16]nwith Cu in Mixed-Valence States:Â Solid-State Synthesis, Crystal Structure, and Third-Order Nonlinear Optical Properties. Inorganic Chemistry, 2005, 44, 9128-9130.	4.0	48
43	Ionothermal synthesis of a 3D dysprosium–1,4-benzenedicarboxylate framework based on the 1D rod-shaped dysprosium–carboxylate building blocks exhibiting slow magnetization relaxation. CrystEngComm, 2014, 16, 486-491.	2.6	48
44	Field-Induced Slow Magnetic Relaxation and Gas Adsorption Properties of a Bifunctional Cobalt(II) Compound. Inorganic Chemistry, 2015, 54, 11362-11368.	4.0	48
45	Electron Transport through a Self-Assembled Monolayer of Thiol-End-Functionalized Tetraphenylporphines and Metal Tetraphenylporphines. Langmuir, 2006, 22, 3035-3039.	3.5	46
46	Coordination chemistry of tetrazolate-5-carboxylate with manganese(ii): synthesis, structure and magnetism. Dalton Transactions, 2009, , 2721.	3.3	45
47	Stable Lanthanide Metal–Organic Frameworks with Ratiometric Fluorescence Sensing for Amino Acids and Tunable Proton Conduction and Magnetic Properties. Inorganic Chemistry, 2022, 61, 6819-6828.	4.0	44
48	Crystal structure and novel magnetic property of a three-dimensional manganese(II)- \hat{l} / 4 -1,3-azido system. Inorganic Chemistry Communication, 1999, 2, 31-34.	3.9	43
49	3D Organic–Inorganic Perovskite Ferroelastic Materials with Two Ferroelastic Phases: [Et ₃ P(CH ₂) ₂ F][Mn(dca) ₃] and [Et ₃]. Chemistry - A European Journal. 2019. 25. 6447-6454.	3.3	43
50	A novel, more vivid Cu2Zn2SOD model: crystal structure and some properties of the Schiff base copper(II) complex: [Cu(appn)](ClO4)2·H2O. Polyhedron, 1997, 16, 119-123.	2.2	42
51	Solvatomagnetic effect and spin-glass behavior in a 1D coordination polymer constructed from EE-azido bridged Mnlll3O units. Chemical Communications, 2008, , 368-370.	4.1	42
52	Structures and magnetism of azide- and carboxylate-bridged metal(ii) systems derived from 1,2-bis(N-carboxymethyl-4-pyridinio)ethane. Dalton Transactions, 2010, 39, 1846-1854.	3.3	42
53	Supramolecular lanthanide metallogrids exhibiting field-induced single-ion magnetic behavior. Dalton Transactions, 2013, 42, 4369.	3. 3	42
54	Slow Magnetization Relaxation in Ni ^{II} Dy ^{III} Fe ^{III} Molecular Cycles. Inorganic Chemistry, 2015, 54, 1206-1208.	4.0	42

#	Article	IF	CITATIONS
55	A homochiral Zn–Dy heterometallic left-handed helical chain complex without chiral ligands: anion-induced assembly and multifunctional integration. Chemical Communications, 2018, 54, 13379-13382.	4.1	42
56	New type of organic semiconductors for field-effect transistors with carbon-carbon triple bonds. Journal of Materials Chemistry, 2009, 19, 1477.	6.7	41
57	Novel Three-Dimensional Metal-Azide Network Induced by a Bipyridine-Based Zwitterionic Monocarboxylate Ligand: Structures and Magnetism. Inorganic Chemistry, 2010, 49, 8092-8098.	4.0	41
58	Multifunctional Zn(<scp>ii</scp>)–Yb(<scp>iii</scp>) complex enantiomers showing second-harmonic generation, near-infrared luminescence, single-molecule magnet behaviour and proton conduction. Journal of Materials Chemistry C, 2020, 8, 16032-16041.	5. 5	41
59	7-Trifluoromethylquinoline-Functionalized Luminescent Photochromic Spiropyran with the Stable Merocyanine Species Both in Solution and in the Solid State. Journal of Organic Chemistry, 2004, 69, 8924-8931.	3.2	40
60	Trinuclear [Co ^{III} ₂ â€"Ln ^{III}] (Ln=Tb, Dy) Singleâ€Ion Magnets with Mixed 6â€Chloroâ€2â€Hydroxypyridine and Schiff Base Ligands. Chemistry - an Asian Journal, 2014, 9, 1847-1853.	3.3	40
61	3D chiral and 2D achiral cobalt(<scp>ii</scp>) compounds constructed from a 4-(benzimidazole-1-yl)benzoic ligand exhibiting field-induced single-ion-magnet-type slow magnetic relaxation. Dalton Transactions, 2016, 45, 7768-7775.	3.3	40
62	Hydrothermal syntheses and crystal structures of two-dimensional (2D) layered vanadium oxide complexes: $M(bipy)(H2O)V2O6$ (M = Ni, Co, bipy = bipyridine) and [Ni(bipy)2V6O17]. Dalton Transactions RSC, 2002, , 598.	2.3	39
63	Nestlike <i>C</i> ₄ ‧ymmetric [Co ₂₄] Metallamacrocycle Sustained by <i>p</i> â€si>tertâ€Butylsulfonylcalix[4]arene and 1,2,4â€Triazole. Chemistry - A European Journal, 2011, 17, 12285-12288.	3.3	39
64	Heterodinuclear MII–LnIII single molecule magnets constructed from exchange-coupled single ion magnets. Dalton Transactions, 2014, 43, 11309.	3.3	39
65	Synthetic Route to a Triphenylenehexaselenol-Based Metal Organic Framework with Semi-conductive and Glassy Magnetic Properties. IScience, 2020, 23, 100812.	4.1	39
66	Syntheses, crystal structures, and magnetic properties of two cyclic dimer M2L2 complexes constructed from a new nitronyl nitroxide ligand and M(hfac)2 (M=Cu2+, Mn2+). Inorganica Chimica Acta, 2007, 360, 3553-3559. altimg="siligit" overflow="scroll"	2.4	37
67	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	3.9	37
68	Cyanide-bridged 1D Mn(iii)–Fe(iii) bimetallic complexes: synthesis, crystal structure and magnetic properties. New Journal of Chemistry, 2009, 33, 2296.	2.8	37
69	Two- and three-dimensional lanthanide–organic frameworks constructed using 1-hydro-6-oxopyridine-3-carboxylate and oxalate ligands. Dalton Transactions, 2009, , 5666.	3.3	37
70	A sandwich-type triple-decker lanthanide complex with mixed phthalocyanine and Schiff base ligands. Dalton Transactions, 2013, 42, 11043.	3.3	35
71	Single-Molecule Magnet Behavior of 1D Coordination Polymers Based on DyZn ₂ (salen) ₂ Units and Pyridin- <i>N</i> -Oxide-4-Carboxylate: Structural Divergence and Magnetic Regulation. Inorganic Chemistry, 2018, 57, 11077-11086.	4.0	34
72	Assembly of chiral 3d–4f wheel-like cluster complexes with achiral ligands: single-molecule magnetic behavior and magnetocaloric effect. Inorganic Chemistry Frontiers, 2020, 7, 3340-3351.	6.0	34

#	Article	IF	CITATIONS
73	Synthesis, Crystal Structure and Third-Order Nonlinear Optical Behavior of a Novel Dimeric Mixed-Ligand Zinc(II) Complex of 1,3-Dithiole-2-thione-4,5-dithiolate. European Journal of Inorganic Chemistry, 2002, 2002, 1591-1594.	2.0	33
74	A Novel Mixed-Valence Cul/Cull Coordination Polymer: Solvothermal Synthesis, Crystal Structure, and Magnetic Properties of CulCull(2-Pyrazinecarboxylate)2(H2O)(ClO4). European Journal of Inorganic Chemistry, 2003, 2003, 3618-3622.	2.0	32
75	New Types of Heterospin Complexes fromtrans-Oxamido-Bridged Copper(II) Binuclear Units and Nitronyl Nitroxide Radicals:Â Crystal Structure and Magnetic Characterization. Inorganic Chemistry, 2004, 43, 6620-6627.	4.0	32
76	Coordination Complexes of Molybdenum with 3,6-Di-tert-butylcatechol. Addition Products of DMSO, PyridineN-oxide, and Triphenylarsine Oxide to the Putative [MoVIO(3,6-DBCat)2] Monomer and Self-Assembly of the Chiral [{MoVIO(3,6-DBCat)2}4] Square. Inorganic Chemistry, 2004, 43, 2114-2124.	4.0	32
77	In situ hydrothermal decarboxylation for unprecedented three-dimensional lanthanide–organic frameworks. Inorganic Chemistry Communication, 2008, 11, 903-906.	3.9	32
78	Two-step warming solvothermal syntheses, luminescence and slow magnetic relaxation of isostructural dense LnMOFs based on nanoscale 3-connected linkers. Inorganic Chemistry Frontiers, 2016, 3, 1076-1081.	6.0	32
79	Rhodamine Salicylaldehyde Hydrazone Dy(III) Complexes: Fluorescence and Magnetism. Inorganic Chemistry, 2018, 57, 4061-4069.	4.0	30
80	Tris[tri(2â€thienyl)phosphine]palladium as the catalyst precursor for thiopheneâ€based Suzukiâ€Miyaura crosscoupling and polycondensation. Journal of Polymer Science Part A, 2008, 46, 4556-4563.	2.3	29
81	Crystal structure and spectroscopic and magnetic properties of a novel cis-4,4′-bipyridine polymeric complex of Nill: cis-catena-(μ-4,4′-bipy) [Ni(Et-XA)2]·0.5EtOH·CHCl3. Polyhedron, 1997, 16, 2667-2671.	2.2	28
82	Carboxylic acid-dependent assembly of neodymium–organic frameworks with attractive topologies and second-order nonlinear optical and/or magnetic properties. CrystEngComm, 2008, 10, 1674.	2.6	28
83	Organicâ^'Inorganic Hybrid Aligned by the Ligandâ^'Ligand Hydrogen Bonds by Using Pyridyl-Substituted Oxalamides as the Building Blocks. Crystal Growth and Design, 2008, 8, 869-876.	3.0	28
84	Multiple thermal magnetic relaxation in a two-dimensional ferromagnetic dysprosium(<scp>iii</scp>) metal–organic framework. RSC Advances, 2015, 5, 104854-104861.	3.6	28
85	A trimetallic strategy towards ZnII4DyIII2CrIII2 and ZnII4DyIII2CoIII2 single-ion magnets. Dalton Transactions, 2015, 44, 15413-15416.	3.3	28
86	Chiral six-coordinate Dy(iii) and Tb(iii) complexes of an achiral ligand: structure, fluorescence, and magnetism. Dalton Transactions, 2017, 46, 13035-13042.	3.3	28
87	Synthesis, Crystal Structure, and Magnetic Properties of a Three-Dimensional Cyano-Bridged Bimetallic Coordination Polymer with an Aromatic Amine Capping Ligand: [Cu(2,2â€~-dpa)]3[Cr(CN)6]2·3H2O (2,2â€~-dpa = 2,2â€~-Dipicolylamine). Crystal Growth and Design, 2006, 6,	3.0 94-98.	27
88	Tetranuclear Uranyl Polyrotaxanes: Preferred Selectivity toward Uranyl Tetramer for Stabilizing a Flexible Polyrotaxane Chain Exhibiting Weakened Supramolecular Inclusion. Chemistry - A European Journal, 2015, 21, 10226-10235.	3.3	27
89	Experimental and theoretical exploration of magnetic exchange interactions and single-molecule magnetic behaviour of bis(î· ¹ :î· ² :î·¼ ₂ -carboxylate)Gdlll2/Dylll2 systems. Dalton Transactions, 2018, 47, 11455-11469.	3.3	27
90	Metallocyclic Ni ₄ Ln ₂ M ₂ single-molecule magnets. Dalton Transactions, 2017, 46, 6544-6552.	3.3	26

#	Article	IF	Citations
91	Luminescence and slow magnetic relaxation of isostructural 2D lanthanide metal–organic frameworks derived from both nicotinate N-oxide and glutarate. RSC Advances, 2015, 5, 92980-92987.	3.6	25
92	Ligand-directed assembly of trinuclear and one-dimensional heterotrimetallic Cu ^{II} Ln ^{III} Fe ^{III} complexes: unusual antiferromagnetic Cu ^{II} Fe ^{III} coupling via cyano bridges. New Journal of Chemistry, 2016, 40, 8643-8649.	2.8	25
93	Homochiral Ferromagnetic Coupling Dy ₂ Single-Molecule Magnets with Strong Magneto-Optical Faraday Effects at Room Temperature. Inorganic Chemistry, 2021, 60, 12039-12048.	4.0	25
94	Ferromagnetic Disklike MnIVMnII3NaI3 Heptanuclear Complex with a S = 9 Ground State. Inorganic Chemistry, 2009, 48, 792-794.	4.0	24
95	Syntheses, crystal structures and magnetic properties of two dicopper(II) complexes and a zigzag 1-D Cu(II) complex of a bidentate pyridyl-pyrazole ligand. Polyhedron, 2011, 30, 715-724.	2.2	24
96	Calixareneâ€Supported Polynuclear Cobalt(II) Cluster Complexes Tuned by Substitution Groups of the Second Bridging Ligands. European Journal of Inorganic Chemistry, 2012, 2012, 4210-4217.	2.0	24
97	Synthesis, crystal structure and magnetic properties of dinuclear NillLnIII complexes based on a flexible polydentate ligand. Dalton Transactions, 2013, 42, 11227.	3.3	24
98	Hexanuclear [Ni2Ln4] clusters exhibiting enhanced magnetocaloric effect and slow magnetic relaxation. RSC Advances, 2014, 4, 53870-53876.	3.6	24
99	Spin-canting in a 1D chain Mn(II) complex with alternating double end-on and double end-to-end azido bridging ligands. Inorganic Chemistry Communication, 2007, 10, 897-901.	3.9	23
100	Porous Coordination Polymers Based on {Mn ₆ } Single-Molecule Magnets. Inorganic Chemistry, 2016, 55, 5880-5885.	4.0	23
101	Peroxidative Oxidation of Alkanes and Alcohols under Mild Conditions by Di- and Tetranuclear Copper (II) Complexes of Bis (2-Hydroxybenzylidene) Isophthalohydrazide. Molecules, 2018, 23, 2699.	3.8	23
102	Novel silver(I) complexes derived from tetrakis(methylthio)tetrathiafulvalene and bis(ethylenedithio)tetrathiafulvalene with 3D and 1D structures. New Journal of Chemistry, 2002, 26, 490-494.	2.8	22
103	Temperature-controlled polymorphism of chiral Cu ^{II} â€"Ln ^{III} dinuclear complexes exhibiting slow magnetic relaxation. Dalton Transactions, 2015, 44, 11191-11201.	3.3	22
104	Guest-induced dimension change. A novel network intercalation complex: {[Cd(4,4′-bipy)2(H2O)2](CF3SO3)2(4,4′-bipy)(H2O)2(C7H8N2O3)2}â^ž. Inorganic Chemistry Communica 1999, 2, 292-297.	tioang	21
105	Two novel windmill-like tetrasupporting heteropolyoxometalates: [MoVI7MoVVIV8O40(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2 (M=Co, Ni). Solid State Sciences, 2004, 6, 689-696.	3.2	21
106	Solvothermal synthesis, crystal structure and magnetic property of a new dinuclear manganese(II)–azido complex: [Mn(2,2′-dpa)(N3)2]2 (2,2′-dpa=2,2′-dipicolylamine). Inorganica Chimi 2005, 358, 834-838.	ca2Acta,	21
107	Crystal Engineering Based on Polymeric Hydrogen-Bonded Supramolecules by Self-Assembling of 4,4â€⁻-(9-Fluorenylidene)diphenol and 4,4â€⁻-Cyclohexylidenebisphenol with Bipyridines. Crystal Growth and Design, 2005, 5, 1041-1047.	3.0	21
108	Slow magnetic relaxation of a three-dimensional metal–organic framework featuring a unique dysprosium(iii) oxalate layer. RSC Advances, 2015, 5, 63186-63192.	3.6	21

#	Article	IF	Citations
109	1D Copper(II)-Aroylhydrazone Coordination Polymers: Magnetic Properties and Microwave Assisted Oxidation of a Secondary Alcohol. Frontiers in Chemistry, 2020, 8, 157.	3.6	21
110	Zn2Ln2 complexes with carbonate bridges formed by the fixation of carbon dioxide in the atmosphere: single-molecule magnet behaviour and magnetocaloric effect. Dalton Transactions, 2020, 49, 2121-2128.	3.3	21
111	A proton conductor showing an indication of single-ion magnet behavior based on a mononuclear Dy(<scp>iii</scp>) complex. Journal of Materials Chemistry C, 2021, 9, 481-488.	5.5	21
112	Bis(ethylenedithio)tetrathiafulvalene Radical Salts with Anderson Type Heteropolymolybdates Containing Tris(alkoxo) Ligands. Crystal Growth and Design, 2005, 5, 1531-1538.	3.0	20
113	First one-dimensional homochiral stairway-like Cu(ii) chains: crystal structures, circular dichroism (CD) spectra, ferroelectricity and antiferromagnetic properties. Dalton Transactions, 2013, 42, 5036.	3.3	20
114	A Chinese Pane-Like 2D Metal-Organic Framework Showing Magnetic Relaxation and Luminescence Dual-Functions. Scientific Reports, 2017, 7, 11156.	3.3	20
115	From 2D to 3D: a facile and effective procedure for fabrication of planar CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 17867-17873.	10.3	20
116	A pair of mononuclear Dy(<scp>iii</scp>) enantiomers showing single-ion magnetic and ferroelectric properties. New Journal of Chemistry, 2018, 42, 10906-10911.	2.8	20
117	A chiral screw propeller-like scalene triangle manganese(iii) cluster. Dalton Transactions, 2010, 39, 1781.	3.3	19
118	Structural determinations and magnetic studies of two new binuclear complexes: azido-bridged Ni(II) dimer and di-(µ-hydroxo)-bridged Cr(III) dimer. Journal of Coordination Chemistry, 2010, 63, 3441-3452.	2.2	19
119	A 2D → 2D polyrotaxane lanthanide–organic framework showing field-induced single-molecule magnet behaviour. RSC Advances, 2014, 4, 36053-36056.	3.6	19
120	Two magnetic î"-chain-based Mn(<scp>ii</scp>) and Co(<scp>ii</scp>) coordination polymers with mixed carboxylate–phosphinate and μ ₃ -OH ^{â~²} bridges. CrystEngComm, 2017, 19, 1052-10)5 7 .6	19
121	Cu(<scp>ii</scp>) complexes of N-rich aroylhydrazone: magnetism and catalytic activity towards microwave-assisted oxidation of xylenes. Dalton Transactions, 2019, 48, 12839-12849.	3.3	19
122	Synthesis and the first structural characterization of a metal complex of rhodamine 6G, R2[CdCl4] \hat{A} · EtOH \hat{A} · H2O (R = 9-(2-ethoxy-carbonylphenyl)-3,6-bis(ethylamino)-2,7-dimethylxanthylium). Inorganica Chimica Acta, 1997, 254, 183-187.	2.4	18
123	Dopant concentration dependence of structure, optical, and magnetic properties of ZnO:Fe thin films. Journal of Crystal Growth, 2011, 314, 30-33.	1.5	18
124	Optimization of the thermoelectric properties of poly[Cux(Cu-ethylenetetrathiolate)]. Synthetic Metals, 2014, 188, 111-115.	3.9	18
125	Spontaneous Resolution of Chiral Co(III)Dy(III) Single-Molecule Magnet Based on an Achiral Flexible Ligand. Crystal Growth and Design, 2018, 18, 7611-7617.	3.0	18
126	Magnetic properties tuned by oxamido bridging ligand derivatives in two new hybrid organic inorganic nitronyl nitroxide copper(ii) complexes. CrystEngComm, 2007, 9, 799.	2.6	17

#	Article	IF	Citations
127	Syntheses, structures and properties of chiral dinuclear zinc complexes with Schiff-base ligands. Inorganic Chemistry Communication, 2012, 20, 303-306.	3.9	17
128	Both magnetic relaxation and luminescence of Zn ₂ Dy ₂ cluster complexes regulated by the bis-imine chain in Schiff base ligands. New Journal of Chemistry, 2019, 43, 14502-14510.	2.8	17
129	Emergent Chirality and Nonlinear Optical Switching in a Ferroelastic Molecular Perovskite Solid Solution. Chemistry of Materials, 2021, 33, 799-805.	6.7	17
130	Synthesis, Crystal Structure, and Magnetic Properties of a New Coordination Polymer Framework [Co ^{II} (4,4′â€bpy)(N ₃) ₂] _{<i>n</i>} . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 549-553.	1.2	16
131	A defective double cubane cluster complex with $\hat{l}/41$,1-azido bridges. Inorganic Chemistry Communication, 2010, 13, 160-162.	3.9	16
132	Crystal structure and magnetic properties of two dinuclear iron(III) complexes with multidentate Schiff-base ligands. Journal of Coordination Chemistry, 2011, 64, 3531-3540.	2.2	16
133	Fine Tuning the Energy Barrier of Molecular Nanomagnets via Lattice Solvent Molecules. Scientific Reports, 2017, 7, 15483.	3.3	16
134	Mechanochromic and Single-Molecule Magnetic Properties of a Rhodamine 6G Dy(III) Complex. ACS Applied Electronic Materials, 2021, 3, 1368-1374.	4.3	16
135	Molecular recognition of organic non-linear optical material by bis(perchlorate)tris(phenanthroline)cadmium(II). Polyhedron, 1997, 16, 1263-1265.	2.2	15
136	A Novel 1-D Ladder-like Coordination Polymer [Eu(dipic)1.5(H2O)4·3H2O]â^ž. Chemistry Letters, 2004, 33, 180-181.	1.3	15
137	A copper(II) coordination polymer with alternating double EO-azido bridges and mixed EO-azido/alkoxo double bridges. Inorganica Chimica Acta, 2009, 362, 1383-1386.	2.4	15
138	Three-dimensional networks based on trinuclear motifs with tricomponent azide-carboxylate-tetrazolate cobridges: synthesis, structure and magnetic properties. Dalton Transactions, 2012, 41, 4188.	3.3	15
139	Field-Induced Relaxation of Magnetization in a Three-Dimensional LnMOF with the Second Bridging Ligand Squarate. ACS Omega, 2016, 1, 286-292.	3.5	15
140	Simultaneous assembly of mononuclear and dinuclear dysprosium(III) complexes behaving as single-molecule magnets in a one-pot hydrothermal synthesis. Science China Chemistry, 2017, 60, 358-365.	8.2	15
141	Iron(<scp>iii</scp>) complexes of 2-methyl-6-(pyrimidin-2-yl-hydrazonomethyl)-phenol as spin-crossover molecular materials. Dalton Transactions, 2017, 46, 16562-16569.	3.3	15
142	Tb ^{III} /3d–Tb ^{III} clusters derived from a 1,4,7-triazacyclononane-based hexadentate ligand with field-induced slow magnetic relaxation and oxygen-sensitive luminescence. New Journal of Chemistry, 2019, 43, 4067-4074.	2.8	15
143	Multifunctional Dylll Enantiomeric Pairs Showing Enhanced Photoluminescences and Third-Harmonic Generation Responses through the Coordination Role of Homochiral Tridentate N,N,N-Pincer Ligands. Inorganic Chemistry, 2021, 60, 13366-13375.	4.0	15
144	A Two-Dimensional Square Network Inclusion Compound Incorporating Guest Molecules Through Both Hydrogen Bonding and Nonionic Electrostatic Attraction. Crystal Structure of [Cd(4,4'-bpy)2(H2O)2]-(ClO4)2.1.5(4,4'-bpy).(C6H4NO3Cl).H2O Acta Chemica Scandinavica, 1998, 52, 1353-1358.	0.7	15

#	Article	lF	Citations
145	Tetrathiafulvalene Derivatives Recognition of Copper with High Selectivity. Chemistry Letters, 2005, 34, 1020-1021.	1.3	14
146	Supramolecular Structures Based on Bis(2-hydroxy-5-chlorophenyl) Sulfide and Spirobicromane with Bipyridines. Crystal Growth and Design, 2005, 5, 1889-1896.	3.0	14
147	A nickel(<scp>ii</scp>)–manganese(<scp>ii</scp>)-azido layered coordination polymer showing a three-dimensional ferrimagnetic order at 35 K. Dalton Transactions, 2018, 47, 836-844.	3.3	14
148	A 10-connected coordination network based on the planar tetranuclear cobalt cluster building blocks: synthesis, structure, and magnetism. Inorganic Chemistry Communication, 2013, 34, 12-14.	3.9	13
149	Diversified magnetic behaviors of new nickel(<scp>ii</scp>) and copper(<scp>ii</scp>) azido coordination polymers templated by diethyl or triethyl amines. New Journal of Chemistry, 2017, 41, 1212-1218.	2.8	13
150	An intense luminescent Dy(<scp>iii</scp>) single-ion magnet with the acylpyrazolonate ligand showing two slow magnetic relaxation processes. New Journal of Chemistry, 2018, 42, 16992-16998.	2.8	13
151	Arraying Octahedral {Cr2Dy4} Units into 3D Single-Molecule-Magnet-Like Inorganic Compounds with Sulfate Bridges. Inorganic Chemistry, 2018, 57, 6803-6806.	4.0	13
152	Enantiopure Chiral Two-dimensional Sinusoidal Lanthanide (III) Coordination Polymers Based on $\langle i\rangle R\langle i\rangle S\langle i\rangle S$	3.0	13
153	CO 2 â€fixation into carbonate anions for the construction of 3dâ€4f cluster complexes with salenâ€type Schiff base ligands: from molecular magnetic refrigerants to luminescent singleâ€molecule magnets. Applied Organometallic Chemistry, 2020, 34, e5893.	3.5	13
154	Synthesis and studies of rare acylhydrazine bridged strong antiferromagnetically coupled dicopper(II) and dioxovanadium(V) complexes of a pyridyl-pyrazole derived Schiff base ligand. Polyhedron, 2012, 46, 105-112.	2.2	12
155	Urothermal synthesis of mononuclear lanthanide compounds: slow magnetization relaxation observed in Dy analogue. CrystEngComm, 2014, 16, 585-590.	2.6	12
156	Slow magnetization relaxation in a one-dimensional chiral dysprosium-carboxylate compound constructed from the cubic Dy4(μ3-OH)4 clusters. Inorganic Chemistry Communication, 2015, 58, 91-94.	3.9	12
157	Dinuclear Lanthanide–Carboxylate Compounds: Field-Induced Slow Relaxation of Magnetization for Dysprosium(III) Analogue. Australian Journal of Chemistry, 2015, 68, 488.	0.9	12
158	Layered Iron(III) and Cobalt(II) Phosphonates Decorated by Hydrophilic Sulfone Groups: Syntheses, Structures and Magnetic Properties. Crystal Growth and Design, 2010, 10, 3721-3726.	3.0	11
159	Anion-controlled self-assembly of two NLO-active dinuclear and molecular square Cu(<scp>ii</scp>) enantiomeric pairs: from antiferromagnetic to ferromagnetic coupling. Dalton Transactions, 2014, 43, 17226-17229.	3.3	11
160	A Cationâ€Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 6760-6764.	2.0	11
161	Title is missing!. Transition Metal Chemistry, 2003, 28, 336-338.	1.4	10
162	Hydrothermal Synthesis and Crystal Structure of a New a-Keggin Unit-supported Cobalt Bipyridyl Complex: [Co(2,2'-BIPY)3]1.5[SiW12O40Co(2,2'-bipy)2(H2O)]Â-0.5H2O. Journal of Coordination Chemistry, 2003, 56, 953-960.	2.2	10

#	Article	IF	CITATIONS
163	Ring Like Octadecanuclear Mixedâ€valence Manganese Cluster with a Spin Ground State of 20. Chemistry - an Asian Journal, 2011, 6, 74-77.	3.3	10
164	The Câ€"F…Fâ€"C short contacts in the metal complexes of fluoro-phenyl-acrylic acids. Journal of Solid State Chemistry, 2011, 184, 481-487.	2.9	10
165	A family of nickel–lanthanide heterometallic dinuclear complexes derived from a chiral Schiff-base ligand exhibiting single-molecule magnet behaviors. Inorganica Chimica Acta, 2015, 435, 274-282.	2.4	10
166	Facile synthesis, precise species control and chemical transformation of highly conducting organic metal chalcogenides $Cu < sub > (i > x < /i > c)$ BHT (BHT = benzenehexathiol; $< i > x < /i > c$ 3, 4, and 5.5). Journal of Materials Chemistry C, 2022, 10, 2711-2717.	5.5	10
167	Solvothermal In Situ Ligand Synthesis, Crystal Structure and Fluorescent Properties of a New Heterocyclic Compound $1, 1$ - Bis $\{3$ -(Pyridin-2-yl)Hlmidazo $[1, 5$ -a]Pyridine $\}$. Letters in Organic Chemistry, 2005, 2, 712-717.	0.5	10
168	Crystal Structures and Luminescence Spectra of Transition Metal Complexes of Rhodamine 6G: R2[CuCl4].3H2O and R2[MnCl4].(EtOH)½ [R = 9-(2-Ethoxycarbonyl)phenyl-3,6-bis(ethylamino)-2,7-dimethylxanthylium] Acta Chemica Scandinavica, 1998, 52, 883-890.	0.7	10
169	Oxo-deficient dioxylene complexes of Mo(vi) containing 3,6-di-tert-butylcatechol. Chemical Communications, 2001, , 2686-2687.	4.1	9
170	Modulating Two Pairs of Chiral Dy ^{III} Enantiomers by Distinct β-Diketone Ligands to Show Giant Differences in Single-Ion Magnet Performance and Nonlinear Optical Response. Inorganic Chemistry, 2022, 61, 9283-9294.	4.0	9
171	Synthesis and crystal structure of a novel zinc(II) complex [Zn(pbp)2](ClO4)2. Polyhedron, 1996, 15, 2051-2055.	2.2	8
172	MOLECULAR RECOGNITION OF AN ORGANIC MOLECULE THROUGH A TWO DIMENSIONAL SQUARE NETWORK INCLUSION COMPLEX. SYNTHESIS AND CRYSTAL STRUCTURE OF [Cd(4,4′-bpy) ₂ (H ₂ O(sub>2 (BF ₄ O(sub>2 O(sub>2 O(sub>2 O(sub>2 O(sub>2 O(sub>2 O(sub>2 O(sub>3) O(sub>	p y)2Â∙	8
173	Coordination Chemistry, 1998, 46, 211-220. Two new uranyl fluoride complexes with UVlî€O–alkali (Na, Cs) interactions: Experimental and theoretical studies. CrystEngComm, 2013, 15, 8041.	2.6	8
174	Preparation and luminescence properties of phosphors of rare earth complexes based on polyoxotungstates. Materials Research Bulletin, 2015, 68, 16-21.	5.2	8
175	Multifunctional Lanthanide Complexes Based on Tetraazacyclolamidophenol Ligand with Field-Induced Slow Magnetic Relaxation, Luminescent and SHG Properties. European Journal of Inorganic Chemistry, 2019, 2019, 1406-1412.	2.0	8
176	Chiral Co-Crystals of $(\langle i\rangle S\langle i\rangle)$ - or $(\langle i\rangle R\langle i\rangle)$ -1,1â \in 2-Binaphthalene-2,2â \in 2-diol and Zn $<$ sub $>$ 2 $<$ /sub $>$ Dy $<$ sub $>$ 2 $<$ /sub $>$ Tetranuclear Complexes Behaving as Single-Molecule Magnets. Crystal Growth and Design, 2021, 21, 4346-4353.	3.0	8
177	Observation of field-induced single-ion magnet behavior in a mononuclear Dylll complex by co-crystallization of a square-planar Cull complex. Inorganica Chimica Acta, 2020, 510, 119718.	2.4	8
178	INCLUSION AND INTERCALATION OF 4,4′-BIPYRIDINE IN A ZINC(II) AQUA PERCHLORATO COMPLEX [Zn(4,4′-bpy)(H2O)3(ClO4)](ClO4)·(4,4′-bpy)1.5·H2O. Journal of Coordination Chemistry, 1998, 46, 183-	-1 91 .	7
179	A new BEDT-TTF salt with MnCl42Ⱐas counter anion: BEDT-TTF4·(MnCl4)·(CH2Cl2)2. Synthetic Metals, 2003, 133-134, 349-351.	3.9	7
180	Supramolecular Architectures of Metal-Containing Macrocycles and a One-Dimensional Supramolecular Structure Based on a Flexible Ligand with an Azobenzene Group. Crystal Growth and Design, 2007, 7, 1497-1500.	3.0	7

#	Article	IF	CITATIONS
181	Mixed-Valent {Mn14} Single-Molecule Magnet Based on Pyridine-2-amidoxime. European Journal of Inorganic Chemistry, 2015, 2015, 5314-5317.	2.0	7
182	Homochiral luminescent lanthanide dinuclear complexes derived from a chiral carboxylate. RSC Advances, 2015, 5, 98097-98104.	3.6	7
183	Syntheses and structures of chiral tri- and tetranuclear Cd(II) clusters with luminescent and ferroelectric properties. Polyhedron, 2015, 85, 894-899.	2.2	7
184	Chiral mononuclear Dy(III) complex based on pyrrolidine-dithiocarboxylate S-donors with field-induced single-ion magnet behavior. Inorganica Chimica Acta, 2018, 473, 145-151.	2.4	7
185	A 10-coordinate cerium(III) complex with a ferrocene-based terpyridine ligand exhibiting field-induced slow magnetic relaxation. Polyhedron, 2020, 188, 114695.	2.2	7
186	A new family of dinuclear lanthanide complexes exhibiting luminescence, magnetic entropy changes and single molecule magnet behaviors. CrystEngComm, 2021, 23, 645-652.	2.6	7
187	A family of lanthanide metal–organic frameworks based on a redox-active tetrathiafulvalene-dicarboxylate ligand showing slow relaxation of magnetisation and electronic conductivity. Dalton Transactions, 2021, 50, 14714-14723.	3.3	7
188	A Novel Nickel(II) Complex Adopting acis-Configuration: Solvothermal Synthesis and Crystal Structure of [NiL2(H2O)4] (L = 1,4-Dihydropyrazine-2,3-dione-5,6-dicarboxylate). European Journal of Inorganic Chemistry, 2002, 2002, 1595-1598.	2.0	6
189	Two New Coordination Polymers of Manganese(II) with O/O- and N/O-Donor Ligands: Synthesis, Structure, Luminescence Study and Thermal Behavior. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 736-742.	3.7	6
190	Asymmetric Assembly of Chiral Lanthanide(III) Tetranuclear Cluster Complexes Using Achiral Mixed Ligands: Single-molecule Magnet Behavior and Magnetic Entropy Change. ACS Omega, 0, , .	3.5	6
191	Bis [O-(4-methylcyclohexyl) dithiocarbonato-S,S']nickel(II). Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 519-521.	0.4	5
192	MOLECULAR RECOGNITION OF AN ORGANIC MOLECULE THROUGH FORMING A CO-CRYSTAL COMPLEX Synthesis and Crystal Structure of [Cdphen ₃](BF ₄) ₂ -2CNA. Journal of Coordination Chemistry, 1998, 43, 227-235.	2.2	5
193	Hydrothermal Synthesis, Crystal Structures and Magnetic Properties of two Bimetallic Cage Cluster Vanadate Complexes [Co(phen)2]2V4O12 and [Co(2,2′-bipy)2]2V4O12. Journal of Coordination Chemistry, 2002, 55, 1327-1335.	2.2	5
194	Solid-State Supramolecular Chemistry of Zn-Tetraphenylporphyrins with 4,4-Dipyridyl N,N-Dioxide and Hexamethylenetetramine. Letters in Organic Chemistry, 2005, 2, 424-427.	0.5	5
195	Two-dimensional layer polyoxometalate-based inorganic metal–organic hybrid supramolecular networks woven by Cu ···Âe€‰Opolyoxoanion short contact weak interactions. Journal of Coordination Chemistry, 2008, 61, 627-639.	2.2	5
196	A 1D Cu(II) coordination polymer exhibiting ferromagnetic interactions and a mononuclear Cu(II) complex of substituted pyrazole carboxylic acids: Synthesis, characterization and crystal structure. Polyhedron, 2011, 30, 1571-1578.	2.2	5
197	Synthesis, structures, and magnetic properties of carboxylate-bridged trinuclear complexes based on low-spin manganese(III)/iron(III) building blocks. Transition Metal Chemistry, 2013, 38, 683-688.	1.4	5
198	Magnetooptical Properties of Lanthanide(III) Metal–Organic Frameworks Based on an Iridium(III) Metalloligand. Inorganic Chemistry, 2022, 61, 3097-3102.	4.0	5

#	Article	IF	CITATIONS
199	MOLECULAR RECOGNITION OF AN ORGANIC MOLECULE BY BIS(TETRAFLUOROBORATE)ZINC(II). SYNTHESIS AND CRYSTAL STRUCTURE OF {[Zn(phen)3](BF4)2}2·MNA·(H2O)1.5. Journal of Coordination Chemistry, 1998, 46, 233-243.	2.2	4
200	Slow magnetization relaxation in a one-dimensional dysprosium-carboxylate compound based on the linear Dy 4 units synthesized ionothermally from a deep-eutectic solvent. Inorganic Chemistry Communication, 2014, 48, 18-21.	3.9	4
201	A new type of copper coordination polymer based on \hat{I}^3 -aminobutyric acid: Syntheses, structures and magnetic properties. Inorganic Chemistry Communication, 2017, 84, 99-102.	3.9	4
202	From 1D to 3D: Fabrication of CH 3 NH 3 Pbl 3 Perovskite Solar Cell Thin Films from (Pyrrolidinium)Pbl 3 via Organic Cation Exchange Approach. Energy Technology, 2020, 8, 2000148.	3.8	4
203	A novel tris (Lewis base) adduct. [(Dimercaptomethylene) propane-dinitrilato-S, S′] tris (3-methyl-pyridine) zinc(II). Polyhedron, 1997, 16, 1637-1641.	2.2	3
204	A NOVEL ORGANIC–INORGANIC COMPLEX WITH A ONE-DIMENSIONAL HELICAL ANION CHAIN: CRYSTAL STRUCTURE AND THERMAL STUDY OF TRIS(4-BROMO-BENZENAMMONIUM) PENTACHLOROCADMATE [(Br[sbnd]C6H4NH3)3CdCl5]. Journal of Coordination Chemistry, 1998, 46, 33-41.	2.2	3
205	Structure and magnetic properties of a chiral dinuclear copper(II) complex assembled from a bpcaâ ⁻ anion. Journal of Molecular Structure, 2014, 1064, 76-80.	3.6	3
206	Synthesis, crystal structure and magnetic properties of cyanide-bridged one-dimensional Ni(II)–Fe(III) complexes based on pentacyanoferrite. Polyhedron, 2014, 81, 450-456.	2.2	3
207	3-Pyridylacetic-Based Lanthanide Complexes Exhibiting Magnetic Entropy Changes, Single-Molecule Magnet, and Fluorescence. ACS Omega, 2022, 7, 2604-2612.	3.5	3
208	Assembly of Hydrazine-Bridged Cyclic Fe ^{III} ₄ Ln ^{III} ₄ Octanuclear Complexes. Crystal Growth and Design, 2022, 22, 1263-1269.	3.0	3
209	An Uneven Chain-like Ferromagnetic Copper(II) Coordination Polymer Displaying Metamagnetic Behavior and Long-Range Magnetic Ordering. Magnetochemistry, 2022, 8, 2.	2.4	3
210	Antiwear and Extreme-Pressure Action of Copper(II) Complex With Alkyl Phosphonic Acid Mono Alkyl Ester. Journal of Tribology, 1996, 118, 676-680.	1.9	2
211	4:1 Lewis Base Adducts of Palladium Dichloride: [Pd(3-picoline)4]Cl2.2H2O. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 1218-1220.	0.4	2
212	4,4'-Azinodimethyldipyridinium Diperchlorate, C12H12N42+.2ClO4â^'. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 1499-1501.	0.4	2
213	Hydrothermal synthesis, crystal structure and magnetic properties of a new 2D layered vanadium oxide complex: [Ni(phen)(H2O)]2V4O12. Journal of Coordination Chemistry, 2005, 58, 327-334.	2.2	2
214	In Situ Self-Assembly of 1D Copper(II) Coordination Polymer Containing EO Azide and Phenolate Bridges: Crystal Structure and Magnetic Properties. Bulletin of the Chemical Society of Japan, 2009, 82, 582-584.	3.2	2
215	In situ synthesis of manganese(III) complexes under control: Crystal structure and magnetic properties. Inorganic Chemistry Communication, 2012, 21, 96-99.	3.9	2
216	Syntheses, crystal structures and magnetic properties of two Ni4($\hat{l}\frac{1}{4}3\hat{a}$ e"phenoxido)4 cubanes: Role of additional bridging carboxylates. Polyhedron, 2017, 129, 199-207.	2.2	2

#	Article	IF	CITATIONS
217	Effects of substituents on bridging ligands on the singleâ€molecule magnet properties of Zn 2 Dy 2 cluster complexes. Applied Organometallic Chemistry, 2021, 35, .	3.5	2
218	Heterotrimetallic Ni ₂ Ln ₂ Fe ₃ chain complexes based on [Fe(1-CH ₃ im)(CN) ₅] ^{2â°'} . Dalton Transactions, 2021, 50, 6427-6431.	3.3	2
219	A mercury(II)-radical complex with a 1D ladder structure. Journal of Coordination Chemistry, 2008, 61, 1325-1332.	2.2	1
220	Inside Cover: Ring Like Octadecanuclear Mixed-valence Manganese Cluster with a Spin Ground State of 20 (Chem. Asian J. 1/2011). Chemistry - an Asian Journal, 2011, 6, 2-2.	3.3	1
221	Structure and Magnetic Properties of a Trinuclear Nickel(II) Complex Constructed by bpca ^{â€"} Anions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2439-2443.	1.2	1
222	Magnetic relaxation in two chain-like Zn2Dy2 Schiff base coordination polymers bridged by tetraoxolene and its one-electron reduced radical. New Journal of Chemistry, 0, , .	2.8	1
223	Synthesis, crystal structure and electrochemical property of 3a,4,5,8,9,9a,10,11â€Octahydroâ€2 <i>H</i> ,3 <i>H</i> à€1,6,7,12â€tetrathiaperylene (H ₁₀ TTPR). Journal of Chemistry, 2004, 22, 1330-1335.	Ch ine se	0