David Botstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10454444/publications.pdf Version: 2024-02-01

		8755	30277
110	108,249	77	107
papers	citations	h-index	g-index
115 all docs	115 docs citations	115 times ranked	114997 citing authors

#	Article	IF	CITATIONS
1	Gene Ontology: tool for the unification of biology. Nature Genetics, 2000, 25, 25-29.	9.4	34,499
2	Molecular portraits of human breast tumours. Nature, 2000, 406, 747-752.	13.7	13,397
3	Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403, 503-511.	13.7	8,977
4	Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8418-8423.	3.3	4,849
5	Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast <i>Saccharomyces cerevisiae</i> by Microarray Hybridization. Molecular Biology of the Cell, 1998, 9, 3273-3297.	0.9	4,372
6	Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 2000, 11, 4241-4257.	0.9	4,281
7	Exploring the new world of the genome with DNA microarrays. Nature Genetics, 1999, 21, 33-37.	9.4	2,189
8	Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 2000, 24, 227-235.	9.4	1,946
9	The Transcriptional Program in the Response of Human Fibroblasts to Serum. Science, 1999, 283, 83-87.	6.0	1,895
10	GO::TermFinderopen source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics, 2004, 20, 3710-3715.	1.8	1,782
11	Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 2003, 34, 166-176.	9.4	1,543
12	Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genetics, 2003, 33, 228-237.	9.4	1,388
13	A gene expression database for the molecular pharmacology of cancer. Nature Genetics, 2000, 24, 236-244.	9.4	1,357
14	Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors. Molecular Biology of the Cell, 2002, 13, 1977-2000.	0.9	1,352
15	Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the United States of America, 2004, 101, 811-816.	3.3	1,175
16	Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12963-12968.	3.3	1,098
17	Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 2001, 409, 533-538.	13.7	1,030
18	Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12877-12882.	3.3	983

#	Article	IF	CITATIONS
19	Relation of Gene Expression Phenotype to Immunoglobulin Mutation Genotype in B Cell Chronic Lymphocytic Leukemia. Journal of Experimental Medicine, 2001, 194, 1639-1648.	4.2	978
20	Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 1999, 23, 41-46.	9.4	928
21	Prediction of Survival in Diffuse Large-B-Cell Lymphoma Based on the Expression of Six Genes. New England Journal of Medicine, 2004, 350, 1828-1837.	13.9	874
22	Gene Expression Signature of Fibroblast Serum Response Predicts Human Cancer Progression: Similarities between Tumors and Wounds. PLoS Biology, 2004, 2, e7.	2.6	824
23	Gene Expression Patterns in Human Liver Cancers. Molecular Biology of the Cell, 2002, 13, 1929-1939.	0.9	779
24	Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 1998, 396, 699-703.	13.7	735
25	Endothelial cell diversity revealed by global expression profiling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10623-10628.	3.3	679
26	Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association. Nature Genetics, 2001, 28, 327-334.	9.4	642
27	Different Gene Expression Patterns in Invasive Lobular and Ductal Carcinomas of the Breast. Molecular Biology of the Cell, 2004, 15, 2523-2536.	0.9	540
28	Molecular characterisation of soft tissue tumours: a gene expression study. Lancet, The, 2002, 359, 1301-1307.	6.3	537
29	Coordination of Growth Rate, Cell Cycle, Stress Response, and Metabolic Activity in Yeast. Molecular Biology of the Cell, 2008, 19, 352-367.	0.9	524
30	Expression of Cytokeratins 17 and 5 Identifies a Group of Breast Carcinomas with Poor Clinical Outcome. American Journal of Pathology, 2002, 161, 1991-1996.	1.9	494
31	A Bayesian framework for combining heterogeneous data sources for gene function prediction (inSaccharomyces cerevisiae). Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8348-8353.	3.3	491
32	Yeast: An Experimental Organism for 21st Century Biology. Genetics, 2011, 189, 695-704.	1.2	450
33	Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5814-5819.	3.3	445
34	The Stanford Microarray Database. Nucleic Acids Research, 2001, 29, 152-155.	6.5	415
35	'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biology, 2000, 1, research0003.1.	13.9	392
36	Systemic and cell type-specific gene expression patterns in scleroderma skin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12319-12324.	3.3	385

#	Article	IF	CITATIONS
37	SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Research, 2003, 31, 219-223.	6.5	376
38	Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 972-977.	3.3	371
39	Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Research, 2002, 30, 69-72.	6.5	322
40	Gene Expression Patterns in Ovarian Carcinomas. Molecular Biology of the Cell, 2003, 14, 4376-4386.	0.9	302
41	Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11796-11801.	3.3	300
42	Variation in Gene Expression Patterns in Human Gastric Cancers. Molecular Biology of the Cell, 2003, 14, 3208-3215.	0.9	285
43	Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 2002, 18, 1454-1461.	1.8	276
44	Diverse and Specific Gene Expression Responses to Stresses in Cultured Human Cells. Molecular Biology of the Cell, 2004, 15, 2361-2374.	0.9	268
45	Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nature Genetics, 2000, 25, 58-62.	9.4	241
46	Systems-level analysis of mechanisms regulating yeast metabolic flux. Science, 2016, 354, .	6.0	236
47	Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature, 1991, 354, 404-408.	13.7	227
48	Gene Ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Research, 2007, 36, D577-D581.	6.5	218
49	Extrachromosomal circular DNA is common in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3114-22.	3.3	205
50	Transformation of follicular lymphoma to diffuse large-cell lymphoma: Alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8886-8891.	3.3	204
51	Defining protein interactions with yeast actin in vivo. Nature Structural Biology, 1995, 2, 28-35.	9.7	198
52	A DNA microarray survey of gene expression in normal human tissues. Genome Biology, 2005, 6, R22.	13.9	198
53	Saccharomyces genome database. Methods in Enzymology, 2002, 350, 329-346.	0.4	188
54	Structure of the yeast endoplasmic reticulum: Localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast, 1991, 7, 891-911.	0.8	182

#	Article	IF	CITATIONS
55	<i>BIM1</i> Encodes a Microtubule-binding Protein in Yeast. Molecular Biology of the Cell, 1997, 8, 2677-2691.	0.9	179
56	Nutritional Homeostasis in Batch and Steady-State Culture of Yeast. Molecular Biology of the Cell, 2004, 15, 4089-4104.	0.9	179
57	Phospholipase A2 group IIA expression in gastric adenocarcinoma is associated with prolonged survival and less frequent metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16203-16208.	3.3	166
58	Supervised harvesting of expression trees. Genome Biology, 2001, 2, research0003.1.	13.9	148
59	RERG Is a Novel ras-related, Estrogen-regulated and Growth-inhibitory Gene in Breast Cancer. Journal of Biological Chemistry, 2001, 276, 42259-42267.	1.6	147
60	Genetic and physical maps of Saccharomyces cerevisiae. Nature, 1997, 387, 67-73.	13.7	145
61	Variation in gene expression patterns in follicular lymphoma and the response to rituximab. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1926-1930.	3.3	144
62	Gene Expression Patterns and Gene Copy Number Changes in Dermatofibrosarcoma Protuberans. American Journal of Pathology, 2003, 163, 2383-2395.	1.9	142
63	Universal Reference RNA as a standard for microarray experiments. BMC Genomics, 2004, 5, 20.	1.2	140
64	Slow Growth Induces Heat-Shock Resistance in Normal and Respiratory-deficient Yeast. Molecular Biology of the Cell, 2009, 20, 891-903.	0.9	136
65	Tissue Microarray Validation of Epidermal Growth Factor Receptor and SALL2 in Synovial Sarcoma with Comparison to Tumors of Similar Histology. American Journal of Pathology, 2003, 163, 1449-1456.	1.9	133
66	Functional analysis reports. Precise gene disruption inSaccharomyces cerevisiae by double fusion polymerase chain reaction. Yeast, 1995, 11, 1275-1280.	0.8	127
67	Gene expression profiles do not consistently predict the clinical treatment response in locally advanced breast cancer. Molecular Cancer Therapeutics, 2006, 5, 2914-2918.	1.9	114
68	Structure–Function Relationships in Yeast Tubulins. Molecular Biology of the Cell, 2000, 11, 1887-1903.	0.9	112
69	Specificity domains distinguish the Ras-related GTPases Ypt1 and Sec4. Nature, 1993, 362, 563-565.	13.7	107
70	Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 39, 595-605.	1.2	107
71	Genome-Wide Analysis of Nucleotide-Level Variation in Commonly Used Saccharomyces cerevisiae Strains. PLoS ONE, 2007, 2, e322.	1.1	100
72	Probing lymphocyte biology by genomic-scale gene expression analysis. Journal of Clinical Immunology, 1998, 18, 373-379.	2.0	96

#	Article	IF	CITATIONS
73	Inference of combinatorial regulation in yeast transcriptional networks: A case study of sporulation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1998-2003.	3.3	95
74	Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome. Nucleic Acids Research, 2006, 34, D442-D445.	6.5	91
75	T Cell Receptor-Independent Basal Signaling via Erk and Abl Kinases Suppresses RAG Gene Expression. PLoS Biology, 2003, 1, e53.	2.6	88
76	Genome-Scale Identification of Membrane-Associated Human mRNAs. PLoS Genetics, 2006, 2, e11.	1.5	84
77	Saccharomyces genome database: Underlying principles and organisation. Briefings in Bioinformatics, 2004, 5, 9-22.	3.2	83
78	Bmi-1 Regulation of INK4A-ARF Is a Downstream Requirement for Transformation of Hematopoietic Progenitors by E2a-Pbx1. Molecular Cell, 2003, 12, 393-400.	4.5	78
79	Visualization of Receptor-mediated Endocytosis in Yeast. Molecular Biology of the Cell, 1999, 10, 799-817.	0.9	72
80	Disruption of Yeast Forkhead-associated Cell Cycle Transcription by Oxidative Stress. Molecular Biology of the Cell, 2004, 15, 5659-5669.	0.9	71
81	Using the Saccharomyces Genome Database (SGD) for analysis of protein similarities and structure. Nucleic Acids Research, 1999, 27, 74-78.	6.5	66
82	Probing β-lactamase structure and function using random replacement mutagenesis. Proteins: Structure, Function and Bioinformatics, 1992, 14, 29-44.	1.5	64
83	Saccharomyces Genome Database (SGD) provides biochemical and structural information for budding yeast proteins. Nucleic Acids Research, 2003, 31, 216-218.	6.5	57
84	Transcriptional response of human mast cells stimulated via the Fc(epsilon)RI and identification of mast cells as a source of IL-11. BMC Immunology, 2002, 3, 5.	0.9	56
85	Dominant-Lethal α-Tubulin Mutants Defective in Microtubule Depolymerization in Yeast. Molecular Biology of the Cell, 2001, 12, 3973-3986.	0.9	55
86	Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19848-19853.	3.3	55
87	The glycine allele of a glycine/arginine polymorphism in the β2-adrenergic receptor gene is associated with essential hypertension in a population of Chinese origin. American Journal of Hypertension, 2001, 14, 1196-1200.	1.0	43
88	Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Molecular Biology of the Cell, 2011, 22, 4192-4204.	0.9	43
89	Mutational Analysis of the Role of Hydrophobic Residues in the 338â^'348 Helix on Actin in Actomyosin Interactions. Biochemistry, 1996, 35, 3670-3676.	1.2	40
90	Changing perspectives in yeast research nearly a decade after the genome sequence. Genome Research, 2005, 15, 1611-1619.	2.4	39

#	Article	IF	CITATIONS
91	Multiple Functions for Actin during Filamentous Growth of <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 1998, 9, 1873-1889.	0.9	38
92	Genetic variation in the human urea transporter-2 is associated with variation in blood pressure. Human Molecular Genetics, 2001, 10, 2157-2164.	1.4	38
93	Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway. Molecular Biology of the Cell, 2012, 23, 3008-3024.	0.9	36
94	It's the Data!. Molecular Biology of the Cell, 2010, 21, 4-6.	0.9	27
95	Identification of Functional Connections Between Calmodulin and the Yeast Actin Cytoskeleton. Genetics, 1998, 150, 43-58.	1.2	21
96	Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in <i>Saccharomyces cerevisiae</i> . Genetics, 2015, 201, 599-612.	1.2	16
97	Genetic Basis of Ammonium Toxicity Resistance in a Sake Strain of Yeast: A Mendelian Case. G3: Genes, Genomes, Genetics, 2013, 3, 733-740.	0.8	15
98	Minor Isozymes Tailor Yeast Metabolism to Carbon Availability. MSystems, 2019, 4, .	1.7	14
99	Automating the construction of gene ontologies. Nature Biotechnology, 2013, 31, 34-35.	9.4	12
100	Expanding yeast knowledge online. , 1998, 14, 1453-1469.		11
101	Challenges in developing a molecular characterization of cancer. Seminars in Oncology, 2002, 29, 280-285.	0.8	10
102	Of Genes and Genomes. Annals of the New York Academy of Sciences, 1999, 882, 32-41.	1.8	8
103	IV. Yeast sequencing reports. Nucleotide sequence of theSAC2 gene ofSaccharomyces cerevisiae. Yeast, 1994, 10, 1211-1216.	0.8	6
104	Missing Value Estimation. , 2003, , 65-75.		6
105	Technological Innovation Leads to Fundamental Understanding in Cell Biology. Molecular Biology of the Cell, 2010, 21, 3791-3792.	0.9	6
106	Phylogenetic Portrait of the Saccharomyces cerevisiae Functional Genome. G3: Genes, Genomes, Genetics, 2013, 3, 1335-1340.	0.8	4
107	Expression Profiling of Breast Cancer: From Molecular Portraits to Clinical Utility. , 2005, , 77-100.		2

108 Computational Methods and Bioinformatic Tools., 0, , 769-904.

#	Article	IF	CITATIONS
109	P-POD, The Princeton Protein Orthology Database, as a Tool for Identifying Gene Function. Nature Precedings, 2009, , .	0.1	0
110	Perspective: Linkage Maps, Communities of Geneticists, and Genome Databases. Genetics, 2020, 216, 261-262.	1.2	0