Michiru Nishita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10452579/publications.pdf

Version: 2024-02-01

117453 182168 31,301 53 34 51 citations h-index g-index papers 55 55 55 65880 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Autonomous and intercellular chemokine signaling elicited from mesenchymal stem cells regulates migration of undifferentiated gastric cancer cells. Genes To Cells, 2022, , .	0.5	1
2	c-Src–mediated phosphorylation and activation of kinesin KIF1C promotes elongation of invadopodia in cancer cells. Journal of Biological Chemistry, 2022, 298, 102090.	1.6	2
3	Oncogenic E6 and/or E7 proteins drive proliferation and invasion of human papilloma virus‑positive head and neck squamous cell cancer through upregulation of Ror2 expression. Oncology Reports, 2021, 46, .	1.2	4
4	Stageâ€dependent function of Wnt5a during male external genitalia development. Congenital Anomalies (discontinued), 2021, 61, 212-219.	0.3	8
5	Mesenchymal stem cellâ€derived CXCL16 promotes progression of gastric cancer cells by STAT3â€mediated expression of Ror1. Cancer Science, 2020, 111, 1254-1265.	1.7	42
6	Tactics of cancer invasion: solitary and collective invasion. Journal of Biochemistry, 2020, 167, 347-355.	0.9	30
7	Impaired ligandâ€dependent MET activation caused by an extracellular SEMA domain missense mutation in lung cancer. Cancer Science, 2019, 110, 3340-3349.	1.7	12
8	Intraflagellar transport 20 promotes collective cancer cell invasion by regulating polarized organization of Golgiâ€associated microtubules. Cancer Science, 2019, 110, 1306-1316.	1.7	17
9	Genetic interactions between Ror2 and Wnt9a, Ror1 and Wnt9a and Ror2 and Ror1: Phenotypic analysis of the limb skeleton and palate in compound mutants. Genes To Cells, 2019, 24, 307-317.	0.5	12
10	Critical role of the Rorâ€family of receptor tyrosine kinases in invasion and proliferation of malignant pleural mesothelioma cells. Genes To Cells, 2018, 23, 606-613.	0.5	12
11	Synchronized mesenchymal cell polarization and differentiation shape the formation of the murine trachea and esophagus. Nature Communications, 2018, 9, 2816.	5.8	55
12	Regulatory mechanisms and cellular functions of non-centrosomal microtubules. Journal of Biochemistry, 2017, 162, 1-10.	0.9	24
13	Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Science Signaling, 2017, 10, .	1.6	60
14	Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Scientific Reports, 2017, 7, 1.	1.6	26,112
15	Expression of Ror2 Associated with Fibrosis of the Submandibular Gland. Cell Structure and Function, 2017, 42, 159-167.	0.5	6
16	Essential role of Wnt5aâ€Ror1/Ror2 signaling in metanephric mesenchyme and ureteric bud formation. Genes To Cells, 2016, 21, 325-334.	0.5	14
17	Wnt5aâ€Ror2 signaling in mesenchymal stem cells promotes proliferation of gastric cancer cells by activating CXCL16–CXCR6 axis. Cancer Science, 2016, 107, 290-297.	1.7	53
18	Insight into the Role of Wnt5a-Induced Signaling in Normal and Cancer Cells. International Review of Cell and Molecular Biology, 2015, 314, 117-148.	1.6	75

#	Article	IF	Citations
19	The ROR Receptor Family. , 2015, , 593-640.		3
20	Role of Wnt5a-Ror2 Signaling in Morphogenesis of the Metanephric Mesenchyme during Ureteric Budding. Molecular and Cellular Biology, 2014, 34, 3096-3105.	1.1	45
21	Critical role of Frizzled1 in ageâ€related alterations of Wnt/βâ€catenin signal in myogenic cells during differentiation. Genes To Cells, 2014, 19, 287-296.	0.5	7
22	Insulin Receptor Substrate-4 Binds to Slingshot-1 Phosphatase and Promotes Cofilin Dephosphorylation. Journal of Biological Chemistry, 2014, 289, 26302-26313.	1.6	19
23	Activation of <scp>W</scp> nt5aâ€ <scp>R</scp> or2 signaling associated with epithelialâ€toâ€mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes To Cells, 2013, 18, 608-619.	0.5	35
24	Ror-family receptor tyrosine kinases regulate maintenance of neural progenitor cells in the developing neocortex. Journal of Cell Science, 2012, 125, 2017-29.	1.2	47
25	Analysis of Wnt/Planar Cell Polarity Pathway in Cultured Cells. Methods in Molecular Biology, 2012, 839, 201-214.	0.4	14
26	Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nature Medicine, 2012, 18, 405-412.	15.2	417
27	Dissection of Wnt5a-Ror2 Signaling Leading to Matrix Metalloproteinase (MMP-13) Expression. Journal of Biological Chemistry, 2012, 287, 1588-1599.	1.6	57
28	Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition. Genes To Cells, 2011, 16, 304-315.	0.5	88
29	Rorâ€family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases. Developmental Dynamics, 2010, 239, 1-15.	0.8	210
30	Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends in Cell Biology, 2010, 20, 346-354.	3.6	170
31	Ror2 is required for midgut elongation during mouse development. Developmental Dynamics, 2010, 239, 941-953.	0.8	7 3
32	Ror2/Frizzled Complex Mediates Wnt5a-Induced AP-1 Activation by Regulating Dishevelled Polymerization. Molecular and Cellular Biology, 2010, 30, 3610-3619.	1.1	157
33	Wnt5a regulates directional cell migration and cell proliferation via Ror2â€mediated noncanonical pathway in mammalian palatogenesis. FASEB Journal, 2009, 23, 308.4.	0.2	0
34	Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2. BMC Molecular Biology, 2008, 9, 11 .	3.0	84
35	Cthrc1 Selectively Activates the Planar Cell Polarity Pathway of Wnt Signaling by Stabilizing the Wnt-Receptor Complex. Developmental Cell, 2008, 15, 23-36.	3.1	255
36	Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development (Cambridge), 2008, 135, 3871-3879.	1.2	200

#	Article	IF	CITATIONS
37	Receptor Tyrosine Kinase Ror2 Mediates Wnt5a-induced Polarized Cell Migration by Activating c-Jun N-terminal Kinase via Actin-binding Protein Filamin A. Journal of Biological Chemistry, 2008, 283, 27973-27981.	1.6	170
38	Wnt5a modulates glycogen synthase kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2. Genes To Cells, 2007, 12, 1215-1223.	0.5	86
39	MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO Journal, 2006, 25, 713-726.	3.5	151
40	Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. Journal of Cell Biology, 2006, 175, 555-562.	2.3	187
41	Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. Journal of Cell Biology, 2005, 171, 349-359.	2.3	190
42	The Receptor Tyrosine Kinase Ror2 Associates with and Is Activated by Casein Kinase Iϵ. Journal of Biological Chemistry, 2004, 279, 50102-50109.	1.6	85
43	A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. Journal of Cell Biology, 2004, 165, 465-471.	2.3	175
44	Phosphoinositide 3-Kinase-mediated Activation of Cofilin Phosphatase Slingshot and Its Role for Insulin-induced Membrane Protrusion. Journal of Biological Chemistry, 2004, 279, 7193-7198.	1.6	101
45	Caspase-mediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing. Genes To Cells, 2004, 9, 591-600.	0.5	55
46	Stromal Cell-Derived Factor $1\hat{l}_{\pm}$ Activates LIM Kinase 1 and Induces Cofilin Phosphorylation for T-Cell Chemotaxis. Molecular and Cellular Biology, 2002, 22, 774-783.	1.1	125
47	Involvement of NLK and Sox 11 in neural induction in Xenopus development. Genes To Cells, 2002, 7, 487-496.	0.5	62
48	Interaction between Wnt and TGF- \hat{l}^2 signalling pathways during formation of Spemann's organizer. Nature, 2000, 403, 781-785.	13.7	439
49	Involvement of the p38 Mitogen-activated Protein Kinase Pathway in Transforming Growth Factor-Î ² -induced Gene Expression. Journal of Biological Chemistry, 1999, 274, 27161-27167.	1.6	407
50	Smad8B, a Smad8 splice variant lacking the SSXS site that inhibits Smad8-mediated signalling. Genes To Cells, 1999, 4, 583-591.	0.5	25
51	The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature, 1999, 399, 798-802.	13.7	569
52	BRAM1, a BMP receptorâ€associated molecule involved in BMP signalling. Genes To Cells, 1998, 3, 257-264.	0.5	46
53	Induction of lateral outgrowths on the chelae of the crayfish, Procambarus clarkii (Girard). Crustacean Research, 1994, 23, 69-73.	0.2	6