
Jean-Denis Faure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10449220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant polyunsaturated fatty acids: Biological roles, regulation and biotechnological applications. Advances in Botanical Research, 2022, , 253-286.	1.1	0
2	Intestinal Availability and Metabolic Effects of Dietary <i>Camelina</i> Sphingolipids during the Metabolic Syndrome Onset in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 788-798.	5.2	3
3	Dynamic Contrast for Plant Phenotyping. ACS Omega, 2020, 5, 15105-15114.	3.5	2
4	Involvement of Arabidopsis BIG protein in cell death mediated by Myo-inositol homeostasis. Scientific Reports, 2020, 10, 11268.	3.3	3
5	PUCHI regulates very long chain fatty acid biosynthesis during lateral root and callus formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14325-14330.	7.1	46
6	Simple imaging protocol for autofluorescence elimination and optical sectioning in fluorescence endomicroscopy. Optica, 2019, 6, 972.	9.3	9
7	Macroscale fluorescence imaging against autofluorescence under ambient light. Light: Science and Applications, 2018, 7, 97.	16.6	14
8	Europe's first and last field trial of gene-edited plants?. ELife, 2018, 7, .	6.0	25
9	Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations. Nature Communications, 2017, 8, 969.	12.8	41
10	A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis. Plant Physiology, 2017, 173, 742-759.	4.8	65
11	Selective gene dosage by <scp>CRISPR</scp> as9 genome editing in hexaploid <i>Camelina sativa</i> . Plant Biotechnology Journal, 2017, 15, 729-739.	8.3	220
12	Camelina, a Swiss knife for plant lipid biotechnology. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D503.	1.4	26
13	Plant sphingolipids: Their importance in cellular organization and adaption. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1329-1335.	2.4	154
14	The Zinc-Finger Protein SOP1 Is Required for a Subset of the Nuclear Exosome Functions in Arabidopsis. PLoS Genetics, 2016, 12, e1005817.	3.5	36
15	Dual Fatty Acid Elongase Complex Interactions in Arabidopsis. PLoS ONE, 2016, 11, e0160631.	2.5	22
16	Evaluation of the potential for interspecific hybridization between Camelina sativa and related wild Brassicaceae in anticipation of field trials of GM camelina. Transgenic Research, 2014, 23, 67-74.	2.4	33
17	Comparative plant sphingolipidomic reveals specific lipids in seeds and oil. Phytochemistry, 2014, 103, 50-58.	2.9	36
18	Reconstitution of Plant Alkane Biosynthesis in Yeast Demonstrates That <i>Arabidopsis</i> ECERIFERUM1 and ECERIFERUM3 Are Core Components of a Very-Long-Chain Alkane Synthesis Complex. Plant Cell, 2012, 24, 3106-3118.	6.6	380

JEAN-DENIS FAURE

#	Article	IF	CITATIONS
19	Sphingolipids involvement in plant endomembrane differentiation: the BY2 case. Plant Journal, 2011, 65, 958-971.	5.7	34
20	Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. Plant Cell Reports, 2011, 30, 177-193.	5.6	33
21	Very-long-chain fatty acids are required for cell plate formation during cytokinesis in <i>Arabidopsis thaliana</i> . Journal of Cell Science, 2011, 124, 3223-3234.	2.0	67
22	Sphingolipids Containing Very-Long-Chain Fatty Acids Define a Secretory Pathway for Specific Polar Plasma Membrane Protein Targeting in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 2362-2378.	6.6	204
23	Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells. Cell Calcium, 2010, 47, 92-100.	2.4	72
24	Glucosylceramide Biosynthesis is Involved in Golgi Morphology and Protein Secretion in Plant Cells. Traffic, 2010, 11, 479-490.	2.7	53
25	Very-Long-Chain Fatty Acids Are Involved in Polar Auxin Transport and Developmental Patterning in <i>Arabidopsis </i> Á. Plant Cell, 2010, 22, 364-375.	6.6	174
26	Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus - Biologies, 2010, 333, 361-370.	0.2	101
27	Targeted interactomics reveals a complex core cell cycle machinery in <i>Arabidopsis thaliana</i> . Molecular Systems Biology, 2010, 6, 397.	7.2	315
28	Systematic analysis of protein subcellular localization and interaction using highâ€ŧhroughput transient transformation of Arabidopsis seedlings. Plant Journal, 2008, 56, 169-179.	5.7	200
29	The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14727-14731.	7.1	216
30	The C Terminus of the Immunophilin PASTICCINO1 Is Required for Plant Development and for Interaction with a NAC-like Transcription Factor. Journal of Biological Chemistry, 2006, 281, 25475-25484.	3.4	66
31	Arabidopsis PASTICCINO2 Is an Antiphosphatase Involved in Regulation of Cyclin-Dependent Kinase A. Plant Cell, 2006, 18, 1426-1437.	6.6	40
32	A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13380-13385.	7.1	105
33	The Immunophilin-Interacting Protein AtFIP37 from Arabidopsis Is Essential for Plant Development and Is Involved in Trichome Endoreduplication. Plant Physiology, 2004, 134, 1283-1292.	4.8	107
34	gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl oA carboxylase. EMBO Reports, 2004, 5, 515-520.	4.5	74
35	Hormonal Control of Cell Proliferation Requires PASTICCINO Genes. Plant Physiology, 2003, 132, 1217-1227.	4.8	54
36	Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis. Plant Journal, 2002, 32, 713-722.	5.7	62

Jean-Denis Faure

#	Article	IF	CITATIONS
37	FKBPs: at the crossroads of folding and transduction. Trends in Plant Science, 2001, 6, 426-431.	8.8	105
38	Cytokinin perception and signal transduction. New Comprehensive Biochemistry, 1999, 33, 461-474.	0.1	4
39	An Arabidopsis immunophilin, AtFKBP12, binds to AtFIP37 (FKBP interacting protein) in an interaction that is disrupted by FK506. Plant Journal, 1998, 15, 783-789.	5.7	51
40	Mutation in the <i>Arabidopsis PASTICCINO1</i> Gene, Which Encodes a New FK506-Binding Protein-Like Protein, Has a Dramatic Effect on Plant Development. Molecular and Cellular Biology, 1998, 18, 3034-3043.	2.3	122
41	Phosphorylation of style S-RNases by Ca2+-dependent protein kinases from pollen tubes. Sexual Plant Reproduction, 1996, 9, 25.	2.2	32
42	Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolism. Plant Journal, 1994, 5, 481-491.	5.7	31
43	Interest in and limits to the utilization of reporter genes for the analysis of transcriptional regulation of nitrate reductase. Molecular Genetics and Genomics, 1992, 235, 259-268.	2.4	55
44	Co-regulated expression of nitrate and nitrite reductases. Plant Journal, 1991, 1, 107-113.	5.7	81