Nancy C Andrews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10449058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A rapid micrqpreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Research, 1991, 19, 2499-2499.	14.5	2,268
2	Disorders of Iron Metabolism. New England Journal of Medicine, 1999, 341, 1986-1995.	27.0	1,693
3	Balancing Acts. Cell, 2004, 117, 285-297.	28.9	1,544
4	Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 2000, 403, 776-781.	27.8	1,491
5	Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genetics, 1997, 16, 383-386.	21.4	1,102
6	The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabolism, 2005, 1, 191-200.	16.2	1,006
7	Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nature Genetics, 2006, 38, 531-539.	21.4	921
8	Interleukin-6 induces hepcidin expression through STAT3. Blood, 2006, 108, 3204-3209.	1.4	782
9	Erythroid transcription factor NF-E2 is a haematopoietic-specific basic–leucine zipper protein. Nature, 1993, 362, 722-728.	27.8	641
10	Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nature Genetics, 2008, 40, 569-571.	21.4	586
11	Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood, 2002, 100, 3776-3781.	1.4	572
12	Iron Homeostasis. Annual Review of Physiology, 2007, 69, 69-85.	13.1	557
13	Forging a field: the golden age of iron biology. Blood, 2008, 112, 219-230.	1.4	537
14	Autosomal-dominant hemochrom-atosis is associated with a mutation in the ferroportin (SLC11A3) gene. Journal of Clinical Investigation, 2001, 108, 619-623.	8.2	429
15	Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. Journal of Clinical Investigation, 2007, 117, 1933-1939.	8.2	401
16	Deletion of <i>Trpm7</i> Disrupts Embryonic Development and Thymopoiesis Without Altering Mg ²⁺ Homeostasis. Science, 2008, 322, 756-760.	12.6	379
17	Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 2007, 446, 92-96.	27.8	374
18	Iron homeostasis: insights from genetics and animal models. Nature Reviews Genetics, 2000, 1, 208-217.	16.3	352

#	Article	IF	CITATIONS
19	Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. Journal of Clinical Investigation, 2005, 115, 1258-1266.	8.2	339
20	A mouse model of juvenile hemochromatosis. Journal of Clinical Investigation, 2005, 115, 2187-2191.	8.2	319
21	The Transferrin Receptor Modulates Hfe-Dependent Regulation of Hepcidin Expression. Cell Metabolism, 2008, 7, 205-214.	16.2	315
22	Hereditary Hemochromatosis Protein, HFE, Interaction with Transferrin Receptor 2 Suggests a Molecular Mechanism for Mammalian Iron Sensing. Journal of Biological Chemistry, 2006, 281, 28494-28498.	3.4	297
23	Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nature Genetics, 2003, 34, 97-101.	21.4	284
24	Anemia of inflammation: the cytokine-hepcidin link. Journal of Clinical Investigation, 2004, 113, 1251-1253.	8.2	283
25	Ineffective erythropoiesis in β-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood, 2007, 109, 5027-5035.	1.4	277
26	Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nature Genetics, 2003, 34, 102-107.	21.4	274
27	Iron-dependent regulation of the divalent metal ion transporter. FEBS Letters, 2001, 509, 309-316.	2.8	269
28	Scara5 Is a Ferritin Receptor Mediating Non-Transferrin Iron Delivery. Developmental Cell, 2009, 16, 35-46.	7.0	264
29	The Maf transcription factors: regulators of differentiation. Trends in Biochemical Sciences, 1997, 22, 437-441.	7.5	254
30	The C282Y Mutation Causing Hereditary Hemochromatosis Does Not Produce a Null Allele. Blood, 1999, 94, 9-11.	1.4	239
31	A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nature Genetics, 2016, 48, 74-78.	21.4	219
32	The iron transporter DMT1. International Journal of Biochemistry and Cell Biology, 1999, 31, 991-994.	2.8	216
33	Comparison of the Interactions of Transferrin Receptor and Transferrin Receptor 2 with Transferrin and the Hereditary Hemochromatosis Protein HFE. Journal of Biological Chemistry, 2000, 275, 38135-38138.	3.4	214
34	Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Reports, 2015, 13, 533-545.	6.4	213
35	The G185R Mutation Disrupts Function of the Iron Transporter Nramp2. Blood, 1998, 92, 2157-2163.	1.4	210
36	Genes that modify the hemochromatosis phenotype in mice. Journal of Clinical Investigation, 2000, 105, 1209-1216.	8.2	204

3

#	Article	IF	CITATIONS
37	Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice. Journal of Clinical Investigation, 2010, 120, 4466-4477.	8.2	202
38	Proinflammatory state, hepcidin, and anemia in older persons. Blood, 2010, 115, 3810-3816.	1.4	191
39	Anemia of inflammation: the hepcidin link. Current Opinion in Hematology, 2005, 12, 107-111.	2.5	169
40	Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood, 2007, 109, 4038-4044.	1.4	162
41	The molecular defect in hypotransferrinemic mice. Blood, 2000, 96, 1113-1118.	1.4	161
42	Iron Is Essential for Neuron Development and Memory Function in Mouse Hippocampus. Journal of Nutrition, 2009, 139, 672-679.	2.9	159
43	IRONMETABOLISM: Iron Deficiency and Iron Overload. Annual Review of Genomics and Human Genetics, 2000, 1, 75-98.	6.2	156
44	The channel kinase, <i>TRPM7</i> , is required for early embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E225-33.	7.1	153
45	Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood, 2005, 106, 2879-2883.	1.4	147
46	Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood, 2010, 115, 3817-3826.	1.4	145
47	Iron and Copper in Mitochondrial Diseases. Cell Metabolism, 2013, 17, 319-328.	16.2	142
48	Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood, 2003, 102, 2574-2580.	1.4	139
49	Divalent Metal Transporter 1 Regulates Iron-Mediated ROS and Pancreatic Î ² Cell Fate in Response to Cytokines. Cell Metabolism, 2012, 16, 449-461.	16.2	133
50	Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7283-7288.	7.1	132
51	Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood, 2002, 99, 1817-1824.	1.4	115
52	Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood, 2002, 99, 1817-1824.	1.4	111
53	Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3428-3435.	7.1	109
54	An Hfe-dependent pathway mediates hyposideremia in response to lipopolysaccharide-induced inflammation in mice. Nature Genetics, 2004, 36, 481-485.	21.4	108

#	Article	IF	CITATIONS
55	Transferrin receptor 1 is differentially required in lymphocyte development. Blood, 2003, 102, 3711-3718.	1.4	103
56	Metal transporters and disease. Current Opinion in Chemical Biology, 2002, 6, 181-186.	6.1	94
57	Hematopoietic-specific Stat5-null mice display microcytic hypochromic anemia associated with reduced transferrin receptor gene expression. Blood, 2008, 112, 2071-2080.	1.4	93
58	Expression of the DMT1 (NRAMP2/DCT1) iron transporter in mice with genetic iron overload disorders. Blood, 2001, 97, 1138-1140.	1.4	90
59	Complexity of CNC Transcription Factors As Revealed by Gene Targeting of the Nrf3 Locus. Molecular and Cellular Biology, 2004, 24, 3286-3294.	2.3	87
60	A mutation in Sec1511 causes anemia in hemoglobin deficit (hbd) mice. Nature Genetics, 2005, 37, 1270-1273.	21.4	86
61	A mutation in a mitochondrial transmembrane protein is responsible for the pleiotropic hematological and skeletal phenotype of <i>flexed-tail</i> (<i>f/f</i>) mice. Genes and Development, 2001, 15, 652-657.	5.9	84
62	The function of heme-regulated eIF2α kinase in murine iron homeostasis and macrophage maturation. Journal of Clinical Investigation, 2007, 117, 3296-3305.	8.2	81
63	Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice. Blood, 2011, 117, 4590-4599.	1.4	80
64	Human MafG Is a Functional Partner for p45 NF-E2 in Activating Globin Gene Expression. Blood, 1997, 89, 3925-3935.	1.4	79
65	Molecules in focus The NF-E2 transcription factor. International Journal of Biochemistry and Cell Biology, 1998, 30, 429-432.	2.8	78
66	Regulation of iron absorption in Hfe mutant mice. Blood, 2002, 100, 1465-1469.	1.4	78
67	The other physician-scientist problem: Where have all the young girls gone?. Nature Medicine, 2002, 8, 439-441.	30.7	78
68	Molecular control of iron metabolism. Best Practice and Research in Clinical Haematology, 2005, 18, 159-169.	1.7	78
69	Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood, 2006, 107, 2952-2958.	1.4	75
70	Iron Transport Across Biologic Membranes. Nutrition Reviews, 1999, 57, 114-123.	5.8	75
71	Transferrin is a major determinant of hepcidin expression in hypotransferrinemic mice. Blood, 2011, 117, 630-637.	1.4	71
72	The Ins and Outs of Iron Homeostasis. Physiology, 2006, 21, 115-123.	3.1	69

5

#	Article	IF	CITATIONS
73	Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis. Proceedings of the United States of America, 2015, 112, 11714-11719.	7.1	68
74	Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle. EBioMedicine, 2015, 2, 1705-1717.	6.1	62
75	Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice. Nature Genetics, 2007, 39, 1025-1032.	21.4	61
76	A Spontaneous, Recurrent Mutation in Divalent Metal Transporter-1 Exposes a Calcium Entry Pathway. PLoS Biology, 2004, 2, e50.	5.6	60
77	Mouse microcytic anaemia caused by a defect in the gene encoding the globin enhancer-binding protein NF-E2. Nature, 1993, 362, 768-770.	27.8	56
78	Transferrin is required for early T-cell differentiation. Immunology, 2004, 112, 543-549.	4.4	56
79	2002 E. Mead Johnson Award for Research in Pediatrics Lecture: The Molecular Biology of the Anemia of Chronic Disease: A Hypothesis. Pediatric Research, 2003, 53, 507-512.	2.3	53
80	Chapter 6 Iron Homeostasis and Erythropoiesis. Current Topics in Developmental Biology, 2008, 82, 141-167.	2.2	50
81	Skeletal muscle hemojuvelin is dispensable for systemic iron homeostasis. Blood, 2011, 117, 6319-6325.	1.4	50
82	Identification of a novel mutation (C321X) in HJV. Blood, 2004, 104, 2176-2177.	1.4	47
83	Understanding Heme Transport. New England Journal of Medicine, 2005, 353, 2508-2509.	27.0	47
84	Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice. Blood, 2004, 103, 2841-2843.	1.4	46
85	Iron homeostasis and inherited iron overload disorders: an overview. Hematology/Oncology Clinics of North America, 2004, 18, 1379-1403.	2.2	44
86	Late stage erythroid precursor production is impaired in mice with chronic inflammation. Haematologica, 2012, 97, 1648-1656.	3.5	43
87	A genetic view of iron homeostasis. Seminars in Hematology, 2002, 39, 227-234.	3.4	42
88	Climbing through Medicine's Glass Ceiling. New England Journal of Medicine, 2007, 357, 1887-1889.	27.0	42
89	Mammalian iron transport: An unexpected link between metal homeostasis and host defense. Translational Research, 1998, 132, 464-468.	2.3	37
90	Haptoglobin modifies the hemochromatosis phenotype in mice. Blood, 2005, 105, 3353-3355.	1.4	36

#	Article	IF	CITATIONS
91	Contributions of β2-microglobulin–dependent molecules and lymphocytes to iron regulation: insights from HfeRag1-/- and β2mRag1-/- double knock-out mice. Blood, 2004, 103, 2847-2849.	1.4	31
92	Closing the Iron Gate. New England Journal of Medicine, 2012, 366, 376-377.	27.0	31
93	When Is a Heme Transporter Not a Heme Transporter? When It's a Folate Transporter. Cell Metabolism, 2007, 5, 5-6.	16.2	29
94	Genes determining blood cell traits. Nature Genetics, 2009, 41, 1161-1162.	21.4	29
95	Molecular insights into mechanisms of iron transport. Current Opinion in Hematology, 1999, 6, 61.	2.5	29
96	Hepcidin induction by transgenic overexpression of Hfe does not require the Hfe cytoplasmic tail, but does require hemojuvelin. Blood, 2010, 116, 5679-5687.	1.4	23
97	cAMP-dependent Protein Kinase Is Necessary for Increased NF-E2·DNA Complex Formation during Erythroleukemia Cell Differentiation. Journal of Biological Chemistry, 1995, 270, 9169-9177.	3.4	20
98	Uroporphyria in Hfe mutant mice given 5-aminolevulinate: A new model of Fe-mediated porphyria cutanea tarda. Hepatology, 2001, 33, 406-412.	7.3	20
99	Deficiency of heme-regulated elF2Â kinase decreases hepcidin expression and splenic iron in HFE-/- mice. Haematologica, 2008, 93, 753-756.	3.5	20
100	Iron in Skin of Mice with Three Etiologies of Systemic Iron Overload. Journal of Investigative Dermatology, 2005, 125, 1200-1205.	0.7	19
101	Ferrit(in)ing Out New Mechanisms in Iron Homeostasis. Cell Metabolism, 2010, 12, 203-204.	16.2	17
102	Multiple Proteins Interact with the Nuclear Inhibitory Protein Repressor Element in the Human Interleukin-3 Promoter. Journal of Biological Chemistry, 1995, 270, 24572-24579.	3.4	16
103	Expression of Stimulator of Fe Transport Is Not Enhanced in Hfe Knockout Mice. Journal of Nutrition, 2001, 131, 1459-1464.	2.9	15
104	Erythroid Transcription Factor NF-E2 Coordinates Hemoglobin Synthesis. Pediatric Research, 1994, 36, 419-423.	2.3	14
105	Ectopic Expression of Transcription Factor NF-E2 Alters the Phenotype of Erythroid and Monoblastoid Cells. Journal of Biological Chemistry, 2000, 275, 25292-25298.	3.4	13
106	A novel murine protein with no effect on iron homoeostasis is homologous with transferrin and is the putative inhibitor of carbonic anhydrase. Biochemical Journal, 2007, 406, 85-95.	3.7	13
107	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
108	Research in academic medical centers: Two threats to sustainable support. Science Translational Medicine, 2015, 7, 289fs22.	12.4	12

#	Article	IF	CITATIONS
109	The G185R Mutation Disrupts Function of the Iron Transporter Nramp2. Blood, 1998, 92, 2157-2163.	1.4	12
110	Probing the iron pool. Focus on "Detection of intracellular iron by its regulatory effect― American Journal of Physiology - Cell Physiology, 2004, 287, C1537-C1538.	4.6	11
111	Analysis of the E399D mutation in SLC11A2. Blood, 2005, 106, 2221-2222.	1.4	11
112	Molecular Characterization and Localization of the HumanMAFGGene. Genomics, 1997, 44, 147-149.	2.9	10
113	Inherited iron overload disorders. Current Opinion in Pediatrics, 2000, 12, 596-602.	2.0	10
114	Animal Models of Hereditary Iron Transport Disorders. Advances in Experimental Medicine and Biology, 2002, 509, 1-17.	1.6	10
115	Control of Systemic Iron Homeostasis by the 3' Ironâ€Responsive Element of Divalent Metal Transporter 1Âin Mice. HemaSphere, 2020, 4, e459.	2.7	10
116	The molecular defect in hypotransferrinemic mice. Blood, 2000, 96, 1113-1118.	1.4	10
117	Iron metabolism and absorption. Reviews in Clinical and Experimental Hematology, 2000, 4, 283-301.	0.1	7
118	ABCs of erythroid mitochondrial iron uptake. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16012-16013.	7.1	7
119	Iron Deficiency Anemia Associated with an Error of Iron Metabolism in Two Siblings: A Thirty Year Follow Up. Hematology, 1996, 1, 65-73.	1.5	6
120	Hemojuvelin Acts as a Bone Morphogenetic Protein Co-Receptor To Regulate Hepcidin Expression Blood, 2005, 106, 511-511.	1.4	5
121	Increased Hepcidin Expression in Mice Affected by β-Thalassemia Reduces Iron Overload with No Effect on Anemia. Blood, 2008, 112, 128-128.	1.4	4
122	A Mutation in Sec15l1 Disrupts the Transferrin Cycle and Causes Anemia in Hemoglobin Deficit (hbd) Mice Blood, 2005, 106, 513-513.	1.4	3
123	Iron Metabolism. , 2006, , 848-853.		2
124	Hepcidin as a Therapeutic Tool to Limit Iron Overload and Improve Anemia In β-Thalassemia. Blood, 2010, 116, 1009-1009.	1.4	2
125	Tmprss6, An Inhibitor of Hepatic Bmp/Smad Signaling, Is Required for Hepcidin Suppression and Iron Loading In a Mouse Model of β-Thalassemia. Blood, 2010, 116, 164-164.	1.4	2
126	Ferreting out the dynamics of ferritin expression. Blood, 2001, 98, 503-504.	1.4	1

#	Article	IF	CITATIONS
127	Forging iron links. Blood, 2003, 101, 2450-2450.	1.4	1
128	Iron Absorption. , 2006, , 1983-1992.		1
129	Of mice and iron: ferroportin disease. Blood, 2007, 109, 4115-4115.	1.4	1
130	An Iron-Clad Role for Proteasomal Degradation. Cell Metabolism, 2011, 14, 281-282.	16.2	1
131	Build it and hope that enough of them will come. Journal of Clinical Investigation, 2009, 119, 2860-2861.	8.2	1
132	Pathophysiologic mechanisms of anemia of chronic disease. Postgraduate Medicine, 2004, 116, 017-022.	2.0	0
133	Inhibited Maturation of Ter119+CD71+ Erythroid Precursors in Mice with Chronic Sterile Abscess Blood, 2008, 112, 3844-3844.	1.4	0
134	Tmprss6 Is a Genetic Modifier of the Hfe-Hemochromatosis Phenotype in Mice Blood, 2009, 114, 625-625.	1.4	0
135	The Serine Protease Tmprss6 Regulates Hepcidin Expression, but Its Loss Does Not Cause Systemic Iron Deficiency In the Fetal and Neonatal Periods. Blood, 2010, 116, 4258-4258.	1.4	0
136	Genetic Loss of Tmprss6 Increases Effective Erythropoiesis in a Mouse Model of β-Thalassemia. Blood, 2012, 120, 482-482.	1.4	0
137	Understanding the Transferrin Receptor and Cellular Iron Deficiency Outside the Erythron. Blood, 2017, 130, SCI-42-SCI-42.	1.4	0

138 The Molecular Basis of Iron Metabolism. , 0, , 169-178.

0