Kevin B Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10446144/publications.pdf

Version: 2024-02-01

66911 28274 28,059 77 55 78 citations h-index g-index papers 78 78 78 34106 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
2	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	21.4	2,634
3	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	21.4	1,818
4	Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010, 467, 832-838.	27.8	1,789
5	Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genetics, 2009, 41, 25-34.	21.4	1,572
6	A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genetics, 2007, 39, 870-874.	21.4	1,370
7	Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nature Genetics, 2008, 40, 768-775.	21.4	1,179
8	Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genetics, 2007, 39, 645-649.	21.4	1,059
9	Multiple loci identified in a genome-wide association study of prostate cancer. Nature Genetics, 2008, 40, 310-315.	21.4	871
10	Genome-wide association study of circulating vitamin D levels. Human Molecular Genetics, 2010, 19, 2739-2745.	2.9	700
11	Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nature Genetics, 2010, 42, 570-575.	21.4	609
12	Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genetics, 2009, 41, 986-990.	21.4	597
13	Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nature Genetics, 2013, 45, 501-512.	21.4	578
14	A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 2010, 42, 224-228.	21.4	539
15	Identification of ten loci associated with height highlights new biological pathways in human growth. Nature Genetics, 2008, 40, 584-591.	21.4	537
16	Detectable clonal mosaicism and its relationship to aging and cancer. Nature Genetics, 2012, 44, 651-658.	21.4	519
17	A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nature Genetics, 2010, 42, 978-984.	21.4	493
18	A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nature Genetics, 2009, 41, 579-584.	21.4	487

#	Article	lF	Citations
19	A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nature Genetics, 2010, 42, 764-767.	21.4	453
20	FTO genotype is associated with phenotypic variability of body mass index. Nature, 2012, 490, 267-272.	27.8	383
21	Performance of Common Genetic Variants in Breast-Cancer Risk Models. New England Journal of Medicine, 2010, 362, 986-993.	27.0	376
22	Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits. PLoS Genetics, 2013, 9, e1003500.	3.5	371
23	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	3.5	331
24	Haseman and Elston revisited. Genetic Epidemiology, 2000, 19, 1-17.	1.3	324
25	Anthropometric Measures, Body Mass Index, and Pancreatic Cancer. Archives of Internal Medicine, 2010, 170, 791.	3.8	314
26	Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nature Genetics, 2012, 44, 1330-1335.	21.4	286
27	A Subset-Based Approach Improves Power and Interpretation for the Combined Analysis of Genetic Association Studies of Heterogeneous Traits. American Journal of Human Genetics, 2012, 90, 821-835.	6.2	242
28	Novel Breast Cancer Susceptibility Locus at 9q31.2: Results of a Genome-Wide Association Study. Journal of the National Cancer Institute, 2011, 103, 425-435.	6.3	225
29	Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nature Genetics, 2011, 43, 60-65.	21.4	220
30	Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nature Genetics, 2009, 41, 1055-1057.	21.4	218
31	Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nature Genetics, 2013, 45, 868-876.	21.4	179
32	A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Human Molecular Genetics, 2012, 21, 5373-5384.	2.9	168
33	Genome-wide association study identifies new prostate cancer susceptibility loci. Human Molecular Genetics, 2011, 20, 3867-3875.	2.9	160
34	Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nature Genetics, 2013, 45, 680-685.	21.4	154
35	Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nature Genetics, 2016, 48, 563-568.	21.4	134
36	Family history of cancer and risk of pancreatic cancer: A pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). International Journal of Cancer, 2010, 127, 1421-1428.	5.1	128

#	Article	IF	Citations
37	Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Human Molecular Genetics, 2013, 22, 3597-3607.	2.9	116
38	Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Cancer Causes and Control, 2013, 24, 13-25.	1.8	114
39	Common Genetic Polymorphisms Modify the Effect of Smoking on Absolute Risk of Bladder Cancer. Cancer Research, 2013, 73, 2211-2220.	0.9	107
40	Comprehensive resequence analysis of a 136Âkb region of human chromosome 8q24 associated with prostate and colon cancers. Human Genetics, 2008, 124, 161-170.	3.8	104
41	Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis, 2012, 33, 1384-1390.	2.8	102
42	Characterization of Large Structural Genetic Mosaicism in Human Autosomes. American Journal of Human Genetics, 2015, 96, 487-497.	6.2	101
43	A genome-wide association study of bladder cancer identifies a new susceptibility locus within SLC14A1, a urea transporter gene on chromosome 18q12.3. Human Molecular Genetics, 2011, 20, 4282-4289.	2.9	100
44	Multilocus Linkage Tests Based on Affected Relative Pairs. American Journal of Human Genetics, 2000, 66, 1273-1286.	6.2	96
45	Fine mapping and functional analysis of a common variant in <i>MSMB</i> on chromosome 10q11.2 associated with prostate cancer susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7933-7938.	7.1	96
46	Genome-wide association study of circulating retinol levels. Human Molecular Genetics, 2011, 20, 4724-4731.	2.9	93
47	Adding Further Power to the Haseman and Elston Method for Detecting Linkage in Larger Sibships: Weighting Sums and Differences. Human Heredity, 2003, 55, 79-85.	0.8	91
48	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
49	Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, $2016, 7, 11843$.	12.8	86
50	Genomewide metaâ€analysis identifies loci associated with <scp>IGF</scp> â€l and <scp>IGFBP</scp> â€3 levels with impact on ageâ€related traits. Aging Cell, 2016, 15, 811-824.	6.7	83
51	A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Human Molecular Genetics, 2012, 21, 456-462.	2.9	81
52	Variant ABO Blood Group Alleles, Secretor Status, and Risk of Pancreatic Cancer: Results from the Pancreatic Cancer Cohort Consortium. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 3140-3149.	2.5	78
53	Exact transmission-disequilibrium tests with multiallelic markers. Genetic Epidemiology, 1997, 14, 337-347.	1.3	74
54	Genome-Wide Association Study of Circulating Estradiol, Testosterone, and Sex Hormone-Binding Globulin in Postmenopausal Women. PLoS ONE, 2012, 7, e37815.	2.5	61

#	Article	IF	CITATIONS
55	Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Human Molecular Genetics, 2013, 22, 2748-2753.	2.9	59
56	Genotypic variants at 2q33 and risk of esophageal squamous cell carcinoma in China: a meta-analysis of genome-wide association studies. Human Molecular Genetics, 2012, 21, 2132-2141.	2.9	58
57	Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels. Human Genetics, 2011, 129, 675-685.	3.8	50
58	Association between GWAS-identified lung adenocarcinoma susceptibility loci andEGFRmutations in never-smoking Asian women, and comparison with findings from Western populations. Human Molecular Genetics, 2016, 26, ddw414.	2.9	50
59	Improved imputation of common and uncommon SNPs with a new reference set. Nature Genetics, 2012, 44, 6-7.	21.4	45
60	Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer. Human Molecular Genetics, 2011, 20, 2869-2878.	2.9	43
61	Large-Scale Pathway-Based Analysis of Bladder Cancer Genome-Wide Association Data from Five Studies of European Background. PLoS ONE, 2012, 7, e29396.	2.5	36
62	Haseman and Elston revisited: The effects of ascertainment and residual familial correlations on power to detect linkage. Genetic Epidemiology, 2000, 19, 456-460.	1.3	30
63	Large-scale fine mapping of the HNF1B locus and prostate cancer risk. Human Molecular Genetics, 2011, 20, 3322-3329.	2.9	28
64	Refining the Prostate Cancer Genetic Association within the <i>JAZF1</i> Gene on Chromosome 7p15.2. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1349-1355.	2.5	26
65	Comprehensive resequence analysis of a 97Åkb region of chromosome 10q11.2 containing the MSMB gene associated with prostate cancer. Human Genetics, 2009, 126, 743-750.	3.8	21
66	Genome-wide linkage scan for genes affecting longitudinal trends in systolic blood pressure. BMC Genetics, 2003, 4, S82.	2.7	18
67	Y chromosome haplogroups and prostate cancer in populations of European and Ashkenazi Jewish ancestry. Human Genetics, 2012, 131, 1173-1185.	3 . 8	14
68	Pooling Data and Linkage Analysis in the Chromosome 5q Candidate Region for Asthma. Genetic Epidemiology, 2001, 21, S103-8.	1.3	10
69	Genomeâ€Wide Linkage Analysis in a General Population Sample Using σ2A Random Effects (SSARs) Fitted by Gibbs Sampling. Genetic Epidemiology, 2001, 21, S674-9.	1.3	7
70	Reply to â€~Mosaic loss of chromosome Y in leukocytes matters'. Nature Genetics, 2019, 51, 7-9.	21.4	7
71	Improved Evidence for Linkage on 6p and 5p with Retrospective Pooling of Data from Three Asthma Genome Screens. Genetic Epidemiology, 2001, 21, S130-5.	1.3	5
72	Comprehensive resequence analysis of a 123â€kb region of chromosome 11q13 associated with prostate cancer. Prostate, 2012, 72, 476-486.	2.3	5

#	Article	IF	CITATIONS
73	Fine mapping of 14q24.1 breast cancer susceptibility locus. Human Genetics, 2012, 131, 479-490.	3.8	5
74	A Resequence Analysis of Genomic Loci on Chromosomes 1q32.1, 5p15.33, and 13q22.1 Associated With Pancreatic Cancer Risk. Pancreas, 2013, 42, 209-215.	1.1	5
75	Polymorphisms in genes related to one-carbon metabolism are not related to pancreatic cancer in PanScan and PanC4. Cancer Causes and Control, 2013, 24, 595-602.	1.8	4
76	Improving the power for disease locus detection in affectedâ€sibâ€pair studies by using twoâ€locus analysis and multiple regression methods. Genetic Epidemiology, 1999, 17, S521-6.	1.3	3
77	Model-based and model-free multipoint genome-wide linkage analysis of alcoholism. Genetic Epidemiology, 1999, 17, S175-S180.	1.3	1