Pleasantine Mill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/104453/publications.pdf

Version: 2024-02-01

29 papers 3,704 citations

304743

22

h-index

28 g-index

42 all docs 42 docs citations

times ranked

42

5891 citing authors

#	Article	IF	CITATIONS
1	Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 2003, 33, 416-421.	21.4	902
2	A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 2004, 6, 1082-1093.	10.3	692
3	Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development. Cell, 2012, 149, 1008-1022.	28.9	397
4	Sox9 Is Essential for Outer Root Sheath Differentiation and the Formation of the Hair Stem Cell Compartment. Current Biology, 2005, 15, 1340-1351.	3.9	366
5	Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes and Development, 2003, 17, 282-294.	5.9	284
6	Human and Mouse Mutations in WDR35 Cause Short-Rib Polydactyly Syndromes Due to Abnormal Ciliogenesis. American Journal of Human Genetics, 2011, 88, 508-515.	6.2	122
7	Shh Controls Epithelial Proliferation via Independent Pathways that Converge on N-Myc. Developmental Cell, 2005, 9, 293-303.	7.0	99
8	Acute Versus Chronic Loss of Mammalian Azi1/Cep131 Results in Distinct Ciliary Phenotypes. PLoS Genetics, 2013, 9, e1003928.	3.5	89
9	Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation. PLoS Genetics, 2009, 5, e1000748.	3.5	81
10	HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus. PLoS Genetics, 2014, 10, e1004577.	3.5	67
11	A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Developmental Cell, 2018, 47, 509-523.e5.	7.0	66
12	Shh expression is required for embryonic hair follicle but not mammary gland development. Developmental Biology, 2003, 264, 153-165.	2.0	63
13	Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. Journal of Cell Biology, 2018, 217, 2583-2598.	5.2	53
14	Gelsolin dysfunction causes photoreceptor loss in induced pluripotent cell and animal retinitis pigmentosa models. Nature Communications, 2017, 8, 271.	12.8	52
15	TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). ELife, 2015, 4, .	6.0	51
16	Cbl-3-Deficient Mice Exhibit Normal Epithelial Development. Molecular and Cellular Biology, 2003, 23, 7708-7718.	2.3	45
17	ZMYND10 functions in a chaperone relay during axonemal dynein assembly. ELife, 2018, 7, .	6.0	44
18	Specific variants in WDR35 cause a distinctive form of Ellis-van Creveld syndrome by disrupting the recruitment of the EvC complex and SMO into the cilium. Human Molecular Genetics, 2015, 24, 4126-4137.	2.9	42

#	Article	IF	CITATIONS
19	Genomic imprinting of PPP1R9A encoding neurabin I in skeletal muscle and extra-embryonic tissues. Journal of Medical Genetics, 2004, 41, 601-608.	3.2	39
20	PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. American Journal of Human Genetics, 2017, 100, 706-724.	6.2	37
21	KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability. Journal of Cell Biology, 2017, 216, 999-1013.	5.2	33
22	A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. ELife, 2021, 10, .	6.0	29
23	Nucleo-cytoplasmic shuttling of splicing factor SRSF1 is required for development and cilia function. ELife, 2021, 10, .	6.0	25
24	<i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma. Cancer Research, 2022, 82, 1548-1559.	0.9	8
25	Live Imaging and Analysis of Cilia and Cell Cycle Dynamics with the Arl13bCerulean-Fucci2a Biosensor and Fucci Tools. Methods in Molecular Biology, 2021, 2329, 291-309.	0.9	2
26	16-P011 Wdr35 is required for mammalian ciliogenesis and Hh responsiveness. Mechanisms of Development, 2009, 126, S265.	1.7	1
27	The regulation of mechanosensory motile cilium formation. Cilia, 2015, 4, .	1.8	1
28	Characterisation of homologues of known and putative dynein assembly factors in a Drosophila model. Cilia, 2015, 4, .	1.8	0
29	Splitting Hairs. , 2006, , 86-118.		O